Second Order Accurate IMEX Methods for Option Pricing Under Merton and Kou Jump-Diffusion Models

被引:0
|
作者
Mohan K. Kadalbajoo
Lok Pati Tripathi
Alpesh Kumar
机构
[1] Indian Institute of Technology Kanpur,Department of Mathematics and Statistics
来源
关键词
Option pricing; Jump-diffusion model; Partial integro-differential equation; Finite differences; Spline collocation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper three implicit-explicit (IMEX) time semi-discrete methods, namely IMEX-BDF1, IMEX-BDF2 and CN-LF, are developed for solving parabolic partial integro-differential equations which arise in option pricing theory when the underlying asset follows a jump diffusion process. It is shown that IMEX-BDF2 and CN-LF are stable and second order accurate, whereas IMEX-BDF1 is stable but only first order accurate. After time semi-discretization, the resulting linear differential equations are solved by using a cubic B-spline collocation method. The methods so developed have computational complexity of O(MNlog2(M))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MNlog_{2}(M))$$\end{document} for Merton model and of O(MN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(MN)$$\end{document} for Kou model, where N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N$$\end{document} denotes the number of time steps and M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$M$$\end{document} the number of collocation points. Some numerical examples, for pricing European options under Merton and Kou jump-diffusion models with constant as well as variable volatility, are presented to demonstrate the stability, convergence and computational complexity of the methods.
引用
收藏
页码:979 / 1024
页数:45
相关论文
共 50 条
  • [31] DG Method for Pricing European Options under Merton Jump-Diffusion Model
    Hozman, Jiri
    Tichy, Tomas
    Vlasak, Miloslav
    APPLICATIONS OF MATHEMATICS, 2019, 64 (05) : 501 - 530
  • [32] Errors in the IMEX-BDF-OS methods for pricing American style options under the jump-diffusion model
    Yadav, Deepak Kumar
    Bhardwaj, Akanksha
    Kumar, Alpesh
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (01):
  • [33] An IMEX predictor-corrector method for pricing options under regime-switching jump-diffusion models
    Kazmi, Kamran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (06) : 1137 - 1157
  • [34] Errors in the IMEX-BDF-OS methods for pricing American style options under the jump-diffusion model
    Deepak Kumar Yadav
    Akanksha Bhardwaj
    Alpesh Kumar
    Computational and Applied Mathematics, 2024, 43
  • [35] Exchange option pricing in jump-diffusion models based on esscher transform
    Li, Wenhan
    Liu, Lixia
    Lv, Guiwen
    Li, Cuixiang
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (19) : 4661 - 4672
  • [36] Insurance accurate calculation method of option pricing submitting to jump-diffusion process
    Zhang Qi-wen
    Kong Liang
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MANAGEMENT SCIENCE & ENGINEERING (14TH) VOLS 1-3, 2007, : 1888 - +
  • [37] Compound option pricing under a double exponential Jump-diffusion model
    Liu, Yu-hong
    Jiang, I-Ming
    Hsu, Wei-tze
    NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2018, 43 : 30 - 53
  • [38] Pricing European option under the generalized fractional jump-diffusion model
    Guo, Jingjun
    Wang, Yubing
    Kang, Weiyi
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (04) : 1917 - 1947
  • [39] Pricing Vulnerable Option under Jump-Diffusion Model with Incomplete Information
    Yang Jiahui
    Zhou Shengwu
    Zhou Haitao
    Guo Kaiqiang
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2019, 2019
  • [40] A robust numerical method for pricing American options under Kou's jump-diffusion models based on penalty method
    Gan, Xiaoting
    Yang, Ying
    Zhang, Kun
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 62 (1-2) : 1 - 21