Vectorial bent functions and partial difference sets

被引:0
|
作者
Ayça Çeşmelioğlu
Wilfried Meidl
Isabel Pirsic
机构
[1] İstanbul Bilgi University,Johann Radon Institute for Computational and Applied Mathematics
[2] Austrian Academy of Sciences,undefined
[3] Institut für Mathematik und Wissenschaftliches Rechnen,undefined
来源
关键词
Bent function; Vectorial bent function; Partial difference set; Cyclotomy; Maiorana McFarland function; 06E30; 11T15; 94C10;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this article is to broaden the understanding of the connections between bent functions and partial difference sets. Recently, the first two authors showed that the elements which a vectorial dual-bent function with certain additional properties maps to 0, form a partial difference set, which generalizes the connection between Boolean bent functions and Hadamard difference sets, and some later established connections between p-ary bent functions and partial difference sets to vectorial bent functions. We discuss the effects of coordinate transformations. As all currently known vectorial dual-bent functions F:Fpn→Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{\mathbb {F}}_{p^n}\rightarrow {\mathbb {F}}_{p^s}$$\end{document} are linear equivalent to l-forms, i.e., to functions satisfying F(βx)=βlF(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\beta x) = \beta ^lF(x)$$\end{document} for all β∈Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in {\mathbb {F}}_{p^s}$$\end{document}, we investigate properties of partial difference sets obtained from l-forms. We show that they are unions of cosets of Fps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}^*$$\end{document}, which also can be seen as certain cyclotomic classes. We draw connections to known results on partial difference sets from cyclotomy. Motivated by experimental results, for a class of vectorial dual-bent functions from Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^n}$$\end{document} to Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}$$\end{document}, we show that the preimage set of the squares of Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}$$\end{document} forms a partial difference set. This extends earlier results on p-ary bent functions.
引用
收藏
页码:2313 / 2330
页数:17
相关论文
共 50 条
  • [31] COMBINATORIAL DESIGNS, DIFFERENCE SETS, AND BENT FUNCTIONS AS PERFECT COLORINGS OF GRAPHS AND MULTIGRAPHS
    Potapov, V. N.
    Avgustinovich, S. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2020, 61 (05) : 867 - 877
  • [32] Combinatorial designs, difference sets and bent functions as perfect colorings of graphs and multigraphs
    Potapov, V.N.
    Avgustinovich, S.V.
    arXiv,
  • [33] A new method for secondary constructions of vectorial bent functions
    Bapic, A.
    Pasalic, E.
    DESIGNS CODES AND CRYPTOGRAPHY, 2021, 89 (11) : 2463 - 2475
  • [34] A new method for secondary constructions of vectorial bent functions
    A. Bapić
    E. Pasalic
    Designs, Codes and Cryptography, 2021, 89 : 2463 - 2475
  • [35] On Vectorial Bent Functions with Dillon-type Exponents
    Lapierre, Lucien
    Lisonek, Petr
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 490 - 494
  • [36] A Further Study of Vectorial Dual-Bent Functions
    Wang, Jiaxin
    Fu, Fang-Wei
    Wei, Yadi
    Yang, Jing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (10) : 7472 - 7483
  • [37] Generic Constructions of (Boolean and Vectorial) Bent Functions and Their Consequences
    Li, Yanjun
    Kan, Haibin
    Mesnager, Sihem
    Peng, Jie
    Tan, Chik How
    Zheng, Lijing
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (04) : 2735 - 2751
  • [38] Bent functions on partial spreads
    Petr Lisoněk
    Hui Yi Lu
    Designs, Codes and Cryptography, 2014, 73 : 209 - 216
  • [39] Bent functions on partial spreads
    Lisonek, Petr
    Lu, Hui Yi
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 209 - 216
  • [40] Automorphisms and equivalence of bent functions and of difference sets in elementary Abelian 2-groups
    Dempwolff, U
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (03) : 1077 - 1131