Bent functions on partial spreads

被引:0
|
作者
Petr Lisoněk
Hui Yi Lu
机构
[1] Simon Fraser University,Department of Mathematics
来源
关键词
Bent function; Partial spread; 94C10; 51E14;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} we use partial spreads of Fp2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p^{2m}$$\end{document} to construct two classes of bent functions from Fp2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p^{2m}$$\end{document} to Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p$$\end{document}. Our constructions generalize the classes PS(−)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PS^{(-)}$$\end{document} and PS(+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PS^{(+)}$$\end{document} of binary bent functions which are due to Dillon.
引用
收藏
页码:209 / 216
页数:7
相关论文
共 50 条
  • [1] Bent functions on partial spreads
    Lisonek, Petr
    Lu, Hui Yi
    DESIGNS CODES AND CRYPTOGRAPHY, 2014, 73 (01) : 209 - 216
  • [2] Generalized bent functions constructed from partial spreads
    Kim, S
    Gil, GM
    Kim, KH
    No, JS
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 41 - 41
  • [3] Bent functions from spreads
    Mesnager, Sihem
    TOPICS IN FINITE FIELDS, 2015, 632 : 295 - 316
  • [4] BENT FUNCTIONS, SPREADS, AND o-POLYNOMIALS
    Cesmelioglu, Ayca
    Meidl, Wilfried
    Pott, Alexander
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2015, 29 (02) : 854 - 867
  • [5] Bent functions linear on elements of some classical spreads and presemifields spreads
    Abdukhalikov, Kanat
    Mesnager, Sihem
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (01): : 3 - 21
  • [6] Bent functions linear on elements of some classical spreads and presemifields spreads
    Kanat Abdukhalikov
    Sihem Mesnager
    Cryptography and Communications, 2017, 9 : 3 - 21
  • [7] Bent functions constructed from finite pre-quasifield spreads
    Wan, Jinlong
    Xu, Guangkui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (06):
  • [8] Bent functions constructed from finite pre-quasifield spreads
    Jinlong Wan
    Guangkui Xu
    Computational and Applied Mathematics, 2023, 42
  • [9] Partial spread and vectorial generalized bent functions
    Martinsen, Thor
    Meidl, Wilfried
    Stanica, Pantelimon
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 85 (01) : 1 - 13
  • [10] Partial spread and vectorial generalized bent functions
    Thor Martinsen
    Wilfried Meidl
    Pantelimon Stănică
    Designs, Codes and Cryptography, 2017, 85 : 1 - 13