Bent functions on partial spreads

被引:0
|
作者
Petr Lisoněk
Hui Yi Lu
机构
[1] Simon Fraser University,Department of Mathematics
来源
关键词
Bent function; Partial spread; 94C10; 51E14;
D O I
暂无
中图分类号
学科分类号
摘要
For an arbitrary prime p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document} we use partial spreads of Fp2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p^{2m}$$\end{document} to construct two classes of bent functions from Fp2m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p^{2m}$$\end{document} to Fp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{F }_p$$\end{document}. Our constructions generalize the classes PS(−)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PS^{(-)}$$\end{document} and PS(+)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$PS^{(+)}$$\end{document} of binary bent functions which are due to Dillon.
引用
收藏
页码:209 / 216
页数:7
相关论文
共 50 条
  • [21] New classes of bent functions and generalized bent functions
    Kim, S
    Gil, GM
    No, JS
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2004, E87A (02): : 480 - 488
  • [22] Sequences of bent functions and near-bent functions
    J. Wolfmann
    Cryptography and Communications, 2017, 9 : 729 - 736
  • [23] Bent functions in the partial spread class generated by linear recurring sequences
    Maximilien Gadouleau
    Luca Mariot
    Stjepan Picek
    Designs, Codes and Cryptography, 2023, 91 : 63 - 82
  • [24] Sequences of bent functions and near-bent functions
    Wolfmann, J.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2017, 9 (06): : 729 - 736
  • [25] BENT FUNCTIONS
    ROTHAUS, OS
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 20 (03) : 300 - 305
  • [26] Bent and generalized bent Boolean functions
    Pantelimon Stănică
    Thor Martinsen
    Sugata Gangopadhyay
    Brajesh Kumar Singh
    Designs, Codes and Cryptography, 2013, 69 : 77 - 94
  • [27] Construction of bent functions from near-bent functions
    Leander, Gregor
    McGuire, Gary
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (04) : 960 - 970
  • [28] New Bent Functions from Positive and Negative Functions of Old Bent Functions
    Climent, Joan-Josep
    Garcia, Francisco J.
    Requena, Veronica
    2008 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS, VOLS 1-3, 2008, : 1343 - +
  • [29] On the representation of bent functions by bent rectangles
    Agievich, SV
    PROBABILISTIC METHODS IN DISCRETE MATHEMATICS, 2002, : 121 - 135
  • [30] Bent and generalized bent Boolean functions
    Stanica, Pantelimon
    Martinsen, Thor
    Gangopadhyay, Sugata
    Singh, Brajesh Kumar
    DESIGNS CODES AND CRYPTOGRAPHY, 2013, 69 (01) : 77 - 94