Vectorial bent functions and partial difference sets

被引:0
|
作者
Ayça Çeşmelioğlu
Wilfried Meidl
Isabel Pirsic
机构
[1] İstanbul Bilgi University,Johann Radon Institute for Computational and Applied Mathematics
[2] Austrian Academy of Sciences,undefined
[3] Institut für Mathematik und Wissenschaftliches Rechnen,undefined
来源
关键词
Bent function; Vectorial bent function; Partial difference set; Cyclotomy; Maiorana McFarland function; 06E30; 11T15; 94C10;
D O I
暂无
中图分类号
学科分类号
摘要
The objective of this article is to broaden the understanding of the connections between bent functions and partial difference sets. Recently, the first two authors showed that the elements which a vectorial dual-bent function with certain additional properties maps to 0, form a partial difference set, which generalizes the connection between Boolean bent functions and Hadamard difference sets, and some later established connections between p-ary bent functions and partial difference sets to vectorial bent functions. We discuss the effects of coordinate transformations. As all currently known vectorial dual-bent functions F:Fpn→Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F:{\mathbb {F}}_{p^n}\rightarrow {\mathbb {F}}_{p^s}$$\end{document} are linear equivalent to l-forms, i.e., to functions satisfying F(βx)=βlF(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F(\beta x) = \beta ^lF(x)$$\end{document} for all β∈Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta \in {\mathbb {F}}_{p^s}$$\end{document}, we investigate properties of partial difference sets obtained from l-forms. We show that they are unions of cosets of Fps∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}^*$$\end{document}, which also can be seen as certain cyclotomic classes. We draw connections to known results on partial difference sets from cyclotomy. Motivated by experimental results, for a class of vectorial dual-bent functions from Fpn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^n}$$\end{document} to Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}$$\end{document}, we show that the preimage set of the squares of Fps\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_{p^s}$$\end{document} forms a partial difference set. This extends earlier results on p-ary bent functions.
引用
收藏
页码:2313 / 2330
页数:17
相关论文
共 50 条
  • [21] Vectorial bent functions in odd characteristic and their components
    Ayça Çeşmelioğlu
    Wilfried Meidl
    Alexander Pott
    Cryptography and Communications, 2020, 12 : 899 - 912
  • [22] On Quadratic Vectorial Bent Functions in Trace Forms
    ZHOU Junchao
    XU Yunge
    ZHANG Wanshan
    ChineseJournalofElectronics, 2020, 29 (05) : 865 - 872
  • [23] On vectorial functions with maximal number of bent components
    Xie, Xianhong
    Yi, Ouyang
    Hu, Honggang
    DESIGNS CODES AND CRYPTOGRAPHY, 2025,
  • [24] Vectorial bent functions in odd characteristic and their components
    Cesmelioglu, Ayca
    Meidl, Wilfried
    Pott, Alexander
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2020, 12 (05): : 899 - 912
  • [25] A Class of New Quadratic Vectorial Bent Functions
    Pang Tingting
    Zeng Xiangyong
    Li Nian
    Xu Yunge
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (05) : 873 - 879
  • [26] On Quadratic Vectorial Bent Functions in Trace Forms
    Zhou Junchao
    Xu Yunge
    Zhang Wanshan
    CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (05) : 865 - 872
  • [27] A Class of New Quadratic Vectorial Bent Functions
    PANG Tingting
    ZENG Xiangyong
    LI Nian
    XU Yunge
    Chinese Journal of Electronics, 2020, 29 (05) : 873 - 879
  • [28] Plateaued functions, partial geometric difference sets, and partial geometric designs
    Xu, Bangteng
    JOURNAL OF COMBINATORIAL DESIGNS, 2019, 27 (12) : 756 - 783
  • [29] Vectorial Bent Functions from Multiple Terms Trace Functions
    Muratovic-Ribic, Amela
    Pasalic, Enes
    Bajric, Samed
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (02) : 1337 - 1347
  • [30] Combinatorial Designs, Difference Sets, and Bent Functions as Perfect Colorings of Graphs and Multigraphs
    V. N. Potapov
    S. V. Avgustinovich
    Siberian Mathematical Journal, 2020, 61 : 867 - 877