Poletskiĭ Type Inequality for Mappings from the Orlicz-Sobolev Classes

被引:0
|
作者
Anatoly Golberg
Ruslan Salimov
Evgeny Sevost’yanov
机构
[1] Holon Institute of Technology,Department of Applied Mathematics
[2] National Academy of Sciences of Ukraine,Institute of Mathematics
[3] Zhitomir State University,Department of Mathematical Analysis
来源
关键词
Orlicz Sobolev Classes; Type Inequality; Quasiregular Mappings; Multiplicity Function; Open Discrete Mapping;
D O I
暂无
中图分类号
学科分类号
摘要
We study the distortion of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-module under non-homeomorphic mappings f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} from Orlicz-Sobolev classes Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,\varphi }_\mathrm{loc}$$\end{document} and established a strengthened form of Poletskii’s inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition f∈Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,\varphi }_\mathrm{loc}$$\end{document} can be replaced by f∈Wloc1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,1}_\mathrm{loc}$$\end{document}.
引用
收藏
页码:881 / 901
页数:20
相关论文
共 50 条
  • [21] Orlicz-Sobolev Algebras
    Andrea Cianchi
    Potential Analysis, 2008, 28
  • [22] Orlicz-Sobolev algebras
    Cianchi, Andrea
    POTENTIAL ANALYSIS, 2008, 28 (04) : 379 - 388
  • [23] Hardy's inequality in Orlicz-Sobolev spaces of variable exponent
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    HOKKAIDO MATHEMATICAL JOURNAL, 2011, 40 (02) : 187 - 203
  • [24] On the Local Behavior of Open Discrete Mappings from the Orlicz–Sobolev Classes
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2017, 68 : 1447 - 1465
  • [25] On the Orlicz–Sobolev Classes and Mappings with Bounded Dirichlet Integral
    V. I. Ryazanov
    R. R. Salimov
    E. A. Sevost’yanov
    Ukrainian Mathematical Journal, 2014, 65 : 1394 - 1405
  • [26] COMPOSITION OF q-QUASICONFORMAL MAPPINGS AND FUNCTIONS IN ORLICZ-SOBOLEV SPACES
    Hencl, Stanislav
    Kleprlik, Ludek
    ILLINOIS JOURNAL OF MATHEMATICS, 2012, 56 (03) : 931 - 955
  • [27] Optimal Orlicz-Sobolev embeddings
    Cianchi, A
    REVISTA MATEMATICA IBEROAMERICANA, 2004, 20 (02) : 427 - 474
  • [28] A Caffarelli-Kohn-Nirenberg inequality in Orlicz-Sobolev spaces and applications
    Bocea, Marian
    Mihailescu, Mihai
    APPLICABLE ANALYSIS, 2012, 91 (09) : 1649 - 1659
  • [29] Taylor's inequalities in Orlicz-Sobolev type spaces
    Kovac, Federico Dario
    Levis, Fabian Eduardo
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (03) : 1190 - 1203
  • [30] Fractional Orlicz-Sobolev embeddings
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 216 - 253