Orlicz Sobolev Classes;
Type Inequality;
Quasiregular Mappings;
Multiplicity Function;
Open Discrete Mapping;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We study the distortion of p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-module under non-homeomorphic mappings f\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f$$\end{document} from Orlicz-Sobolev classes Wloc1,φ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$W^{1,\varphi }_\mathrm{loc}$$\end{document} and established a strengthened form of Poletskii’s inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the p\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p$$\end{document}-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition f∈Wloc1,φ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f\in W^{1,\varphi }_\mathrm{loc}$$\end{document} can be replaced by f∈Wloc1,1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$f\in W^{1,1}_\mathrm{loc}$$\end{document}.
机构:
CNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, ItalyCNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
Alberico, Angela
Cianchi, Andrea
论文数: 0引用数: 0
h-index: 0
机构:
Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgagni 67-A, I-50134 Florence, ItalyCNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
Cianchi, Andrea
Pick, Lubos
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675, Czech RepublicCNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
Pick, Lubos
Slavikova, Lenka
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Fac Math & Phys, Dept Math Anal, Sokolovska 83, Prague 18675, Czech RepublicCNR, Ist Applicaz Calcolo M Picone, Via Pietro Castellino 111, I-80131 Naples, Italy
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Univ Sci, Dept Math & Mech, Pyongyang, North KoreaBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Kang, Cholryong
Wang, Fengyu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
Swansea Univ, Dept Math, Swansea SA2 8PP, W Glam, WalesBeijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China