Poletskiĭ Type Inequality for Mappings from the Orlicz-Sobolev Classes

被引:0
|
作者
Anatoly Golberg
Ruslan Salimov
Evgeny Sevost’yanov
机构
[1] Holon Institute of Technology,Department of Applied Mathematics
[2] National Academy of Sciences of Ukraine,Institute of Mathematics
[3] Zhitomir State University,Department of Mathematical Analysis
来源
关键词
Orlicz Sobolev Classes; Type Inequality; Quasiregular Mappings; Multiplicity Function; Open Discrete Mapping;
D O I
暂无
中图分类号
学科分类号
摘要
We study the distortion of p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-module under non-homeomorphic mappings f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} from Orlicz-Sobolev classes Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$W^{1,\varphi }_\mathrm{loc}$$\end{document} and established a strengthened form of Poletskii’s inequality. This inequality was known for quasiregular mappings and conformal moduli. In addition, our estimates involve the p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-outer dilatation (instead of the classical inner dilatation) and the multiplicity function. In the case of the planar domains, the condition f∈Wloc1,φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,\varphi }_\mathrm{loc}$$\end{document} can be replaced by f∈Wloc1,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in W^{1,1}_\mathrm{loc}$$\end{document}.
引用
收藏
页码:881 / 901
页数:20
相关论文
共 50 条
  • [31] Characterization of orlicz-sobolev space
    Tuominen, Heli
    ARKIV FOR MATEMATIK, 2007, 45 (01): : 123 - 139
  • [32] ORLICZ-SOBOLEV IMBEDDING THEOREM
    ADAMS, RA
    JOURNAL OF FUNCTIONAL ANALYSIS, 1977, 24 (03) : 241 - 257
  • [33] Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces
    Benyaiche, Allami
    Khlifi, Ismail
    POTENTIAL ANALYSIS, 2020, 53 (02) : 631 - 643
  • [34] Harnack Inequality for Quasilinear Elliptic Equations in Generalized Orlicz-Sobolev Spaces
    Allami Benyaiche
    Ismail Khlifi
    Potential Analysis, 2020, 53 : 631 - 643
  • [35] ON A PROPERTY OF ORLICZ-SOBOLEV SPACES
    GOSSEZ, JP
    LECTURE NOTES IN MATHEMATICS, 1984, 1107 : 102 - 105
  • [36] ORLICZ-SOBOLEV CAPACITY OF BALLS
    Futamura, T.
    Mizuta, Y.
    Ohno, T.
    Shimomura, T.
    ILLINOIS JOURNAL OF MATHEMATICS, 2011, 55 (02) : 543 - 553
  • [37] Orlicz-Sobolev nematic elastomers
    Henao, Duvan
    Stroffolini, Bianca
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [38] On fractional Orlicz-Sobolev spaces
    Alberico, Angela
    Cianchi, Andrea
    Pick, Lubos
    Slavikova, Lenka
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [39] ON WEIGHTED ORLICZ-SOBOLEV INEQUALITIES
    Anoop, T., V
    Das, Ujjal
    Roy, Subhajit
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (10) : 2849 - +
  • [40] On F-Sobolev and Orlicz-Sobolev inequalities
    Kang, Cholryong
    Wang, Fengyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2009, 4 (04) : 659 - 667