Taylor's inequalities in Orlicz-Sobolev type spaces

被引:1
|
作者
Kovac, Federico Dario [1 ]
Levis, Fabian Eduardo [2 ,3 ]
机构
[1] Univ Nacl Rio Cuarto, Fac Ciencias Exactas Fisico Quim & Nat, CONICET, Rio Cuarto, Argentina
[2] Univ Nacl Pampa, Fac Ingn, Gen Pico, Argentina
[3] Univ Nacl Rio Cuarto, CONICET, FCEFQyN, RN 36 KM 601,X5804BYA, Cordoba, Argentina
关键词
best polynomial approximation; convergence; inequalities; Orlicz-Sobolev spaces; Orlicz spaces; POLYNOMIAL-APPROXIMATION OPERATOR; DIFFERENTIABILITY;
D O I
10.1002/mana.202100135
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain inequalities involving the Taylor polynomial and weak derivatives of a function in an Orlicz-Sobolev type space. Moreover, we show that any such function can be expanded in a finite Taylor series almost everywhere. As a consequence, we prove that the coefficients of any extended best polynomial L-phi-approximation of a function on a ball almost everywhere converge to the weak derivatives of such a function when the radius tends to 0. Lastly, we get a mean convergence result of such coefficients.
引用
收藏
页码:1190 / 1203
页数:14
相关论文
共 50 条