Ternary Egyptian fractions with prime denominator

被引:0
|
作者
Adva Mond
Julien Portier
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics (DPMMS)
来源
关键词
Egyptian fractions; Analytic number theory; Counting problems;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p, let A3(p)=|{m∈N:∃m1,m2,m3∈N,mp=1m1+1m2+1m3}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_3(p)= | \{ m \in \mathbb {N}: \exists m_1,m_2,m_3 \in \mathbb {N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$$\end{document}. In 2019 Luca and Pappalardi proved that x(logx)3≪∑p≤xA3(p)≪x(logx)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (\log x)^3 \ll \sum _{p \le x} A_{3}(p) \ll x (\log x)^5$$\end{document}. We improve the upper bound, showing ∑p≤xA3(p)≪x(logx)3(loglogx)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] Diophantine approximation with prime denominator in real quadratic function fields
    Baier, Stephan
    Molla, Esrafil Ali
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 91
  • [42] EGYPTIAN FRACTIONS WITH ODD DENOMINATORS
    Elsholtz, Christian
    QUARTERLY JOURNAL OF MATHEMATICS, 2016, 67 (03): : 425 - 430
  • [43] Farey fractions with prime denominators
    Welch, D. E.
    ACTA ARITHMETICA, 2008, 134 (01) : 93 - 99
  • [44] COMMON NOMINATOR OR COMMON DENOMINATOR? TEACHERS' VIEWS ON COMPARING FRACTIONS
    Tsamir, Pessia
    Tirosh, Dina
    SEMT '05 INTERNATIONAL SYMPOSIUM ELEMENTARY MATHS TEACHING, 2005, : 316 - 323
  • [45] PRIME IDEALS IN TERNARY SEMIGROUPS
    Shabir, Muhammad
    Bashir, Shahida
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2009, 2 (01) : 141 - 154
  • [46] A COMPARISON OF THE COMMON DENOMINATOR AND INVERSION METHOD IN TEACHING DIVISION OF FRACTIONS
    CAPPS, LR
    JOURNAL OF EDUCATIONAL RESEARCH, 1963, 56 (10): : 516 - 522
  • [47] Diophantine approximation with prime denominator in quadratic number fields under GRH
    Baier, Stephan
    Das, Sourav
    Molla, Esrafil Ali
    RAMANUJAN JOURNAL, 2024, 65 (03): : 1363 - 1405
  • [48] On the exceptional set for binary Egyptian fractions
    Huang, Jing-Jing
    Vaughan, Robert C.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2013, 45 : 861 - 874
  • [50] THEOREM OF RAV CONCERNING EGYPTIAN FRACTIONS
    WEBB, WA
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1975, 18 (01): : 155 - 156