Ternary Egyptian fractions with prime denominator

被引:0
|
作者
Adva Mond
Julien Portier
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics (DPMMS)
来源
关键词
Egyptian fractions; Analytic number theory; Counting problems;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p, let A3(p)=|{m∈N:∃m1,m2,m3∈N,mp=1m1+1m2+1m3}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_3(p)= | \{ m \in \mathbb {N}: \exists m_1,m_2,m_3 \in \mathbb {N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$$\end{document}. In 2019 Luca and Pappalardi proved that x(logx)3≪∑p≤xA3(p)≪x(logx)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (\log x)^3 \ll \sum _{p \le x} A_{3}(p) \ll x (\log x)^5$$\end{document}. We improve the upper bound, showing ∑p≤xA3(p)≪x(logx)3(loglogx)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [21] On the denominator problem for the values of a ternary cubic form
    Bayadilov, EE
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1999, (01): : 58 - 60
  • [22] ON DIGIT PATTERNS IN EXPANSIONS OF RATIONAL NUMBERS WITH PRIME DENOMINATOR
    Shparlinski, Igor E.
    Steiner, Wolfgang
    QUARTERLY JOURNAL OF MATHEMATICS, 2013, 64 (04): : 1231 - 1238
  • [23] Estimates of Complete Rational Trigonometric Sums with a Prime Denominator
    Vasil'ev, A. N.
    MOSCOW UNIVERSITY MATHEMATICS BULLETIN, 2014, 69 (02) : 77 - 80
  • [24] Statistical properties of finite continued fractions with fixed denominator
    M. O. Avdeeva
    V. A. Bykovskii
    Doklady Mathematics, 2013, 87 : 160 - 163
  • [25] ON THE DISTRIBUTION OF PARTIAL QUOTIENTS OF REDUCED FRACTIONS WITH FIXED DENOMINATOR
    Aistleitner, Christoph
    Borda, Bence
    Hauke, Manuel
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (02) : 1371 - 1408
  • [26] The average length of finite continued fractions with fixed denominator
    Bykovskii, V. A.
    Frolenkov, D. A.
    SBORNIK MATHEMATICS, 2017, 208 (05) : 644 - 683
  • [27] Statistical properties of finite continued fractions with fixed denominator
    Avdeeva, M. O.
    Bykovskii, V. A.
    DOKLADY MATHEMATICS, 2013, 87 (02) : 160 - 163
  • [28] GENERALIZATIONS OF PRIME TERNARY SUBSEMIMODULES OF TERNARY SEMIMODULES
    Bataineh, Malik
    Abu-Dawwas, Rashid
    Oteir, Wurood
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (39): : 258 - 268
  • [29] THE SPLITTING ALGORITHM FOR EGYPTIAN FRACTIONS
    BEECKMANS, L
    JOURNAL OF NUMBER THEORY, 1993, 43 (02) : 173 - 185
  • [30] NEW ALGORITHM FOR EGYPTIAN FRACTIONS
    BLEICHER, MN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (07): : A813 - A814