Ternary Egyptian fractions with prime denominator

被引:0
|
作者
Adva Mond
Julien Portier
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics (DPMMS)
来源
关键词
Egyptian fractions; Analytic number theory; Counting problems;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p, let A3(p)=|{m∈N:∃m1,m2,m3∈N,mp=1m1+1m2+1m3}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_3(p)= | \{ m \in \mathbb {N}: \exists m_1,m_2,m_3 \in \mathbb {N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$$\end{document}. In 2019 Luca and Pappalardi proved that x(logx)3≪∑p≤xA3(p)≪x(logx)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (\log x)^3 \ll \sum _{p \le x} A_{3}(p) \ll x (\log x)^5$$\end{document}. We improve the upper bound, showing ∑p≤xA3(p)≪x(logx)3(loglogx)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Egyptian fractions of bounded length
    Lebowitz-Lockard, Noah
    RESEARCH IN NUMBER THEORY, 2024, 10 (01)
  • [32] ON EGYPTIAN FRACTIONS OF LENGTH 3
    Banderier, Cyril
    Gomez Ruiz, Carlos Alexis
    Luca, Florian
    Pappalardi, Francesco
    Trevino, Enrique
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2021, 62 (01): : 257 - 274
  • [33] AN ANALYTIC CHARACTERIZATION OF EGYPTIAN FRACTIONS
    ORDMAN, ET
    AMERICAN MATHEMATICAL MONTHLY, 1984, 91 (08): : 518 - 518
  • [34] Egyptian fractions of bounded length
    Noah Lebowitz-Lockard
    Research in Number Theory, 2024, 10
  • [35] A proof of a conjecture on Egyptian fractions
    Hagedorn, TR
    AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (01): : 62 - 63
  • [36] Khinchin's theorem in k dimensions with prime numerator and denominator
    Jones, H
    ACTA ARITHMETICA, 2001, 99 (03) : 205 - 225
  • [37] SUMS OF DIVISORS AND EGYPTIAN FRACTIONS
    FRIEDMAN, CN
    JOURNAL OF NUMBER THEORY, 1993, 44 (03) : 328 - 339
  • [38] REPRESENTATION OF 1 BY EGYPTIAN FRACTIONS
    ERDOS, P
    STRAUS, E
    AMERICAN MATHEMATICAL MONTHLY, 1971, 78 (03): : 302 - &
  • [39] On a problem related to Egyptian fractions
    Jianu, Marilena
    Popescu, Sever Angel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2021, 64 (04): : 401 - 411
  • [40] LENGTH AND DENOMINATORS OF EGYPTIAN FRACTIONS
    YOKOTA, H
    JOURNAL OF NUMBER THEORY, 1986, 24 (03) : 249 - 258