Ternary Egyptian fractions with prime denominator

被引:0
|
作者
Adva Mond
Julien Portier
机构
[1] University of Cambridge,Department of Pure Mathematics and Mathematical Statistics (DPMMS)
来源
关键词
Egyptian fractions; Analytic number theory; Counting problems;
D O I
暂无
中图分类号
学科分类号
摘要
For a prime number p, let A3(p)=|{m∈N:∃m1,m2,m3∈N,mp=1m1+1m2+1m3}|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_3(p)= | \{ m \in \mathbb {N}: \exists m_1,m_2,m_3 \in \mathbb {N}, \frac{m}{p}=\frac{1}{m_1}+\frac{1}{m_2}+\frac{1}{m_3} \} |$$\end{document}. In 2019 Luca and Pappalardi proved that x(logx)3≪∑p≤xA3(p)≪x(logx)5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x (\log x)^3 \ll \sum _{p \le x} A_{3}(p) \ll x (\log x)^5$$\end{document}. We improve the upper bound, showing ∑p≤xA3(p)≪x(logx)3(loglogx)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{p \le x} A_{3}(p) \ll x (\log x)^3 (\log \log x)^2$$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] On ternary Egyptian fractions with prime denominator
    Luca, Florian
    Pappalardi, Francesco
    RESEARCH IN NUMBER THEORY, 2019, 5 (04)
  • [2] On ternary Egyptian fractions with prime denominator
    Florian Luca
    Francesco Pappalardi
    Research in Number Theory, 2019, 5
  • [3] Ternary Egyptian fractions with prime denominator
    Mond, Adva
    Portier, Julien
    RESEARCH IN NUMBER THEORY, 2022, 8 (03)
  • [4] NUMBERS BADLY APPROXIMABLE BY FRACTIONS WITH PRIME DENOMINATOR
    HARMAN, G
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1995, 118 : 1 - 5
  • [5] Egyptian Fractions and Prime Power Divisors
    Machacek, John
    JOURNAL OF INTEGER SEQUENCES, 2018, 21 (03)
  • [6] EGYPTIAN FRACTIONS
    VOSE, MD
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (JAN) : 21 - 24
  • [7] DENOMINATOR SYSTEMS AND MODULES OF GENERALIZED FRACTIONS
    HAMIEH, MA
    ZAKERI, H
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 33 : 237 - 244
  • [8] The other even-denominator fractions
    Pan, W
    Yeh, AS
    Xia, JS
    Stormer, HL
    Tsui, DC
    Adams, ED
    Pfeiffer, LN
    Baldwin, KW
    West, KW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (01): : 9 - 16
  • [9] EGYPTIAN FRACTIONS
    MONTGOMERY, PL
    AMERICAN MATHEMATICAL MONTHLY, 1979, 86 (03): : 224 - 224
  • [10] The set of prime divisors of generalized denominator ideals
    Baba K.
    Yoshida K.-I.
    Arabian Journal of Mathematics, 2013, 2 (4) : 333 - 343