A framework for synthetic validation of 3D echocardiographic particle image velocimetry

被引:0
|
作者
Ahmad Falahatpisheh
Arash Kheradvar
机构
[1] University of California,Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Engineering
[2] Irvine,undefined
来源
Meccanica | 2017年 / 52卷
关键词
Particle image velocimetry; Hill’s spherical vortex; Echocardiography; Brightness field; Echo-PIV;
D O I
暂无
中图分类号
学科分类号
摘要
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document} and a given 3D brightness field B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}. The method begins with computing the inverse flow V∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}^{\varvec{*}} $$\end{document} based on the velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}. Then the transformation of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}, imposed by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}, is calculated using the computed inverse flow according to B∗x=Bx+V∗x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)$$\end{document}, where x is the coordinates of voxels in B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document}, with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document} and the generated B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document} are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.
引用
收藏
页码:555 / 561
页数:6
相关论文
共 50 条
  • [41] 2D µ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold
    A. Campos Marin
    T. Grossi
    E. Bianchi
    G. Dubini
    D. Lacroix
    Annals of Biomedical Engineering, 2017, 45 : 1341 - 1351
  • [42] Cross-validation of 3D particle tracking velocimetry for the study of granular flows down rotating chutes
    Shirsath, S. S.
    Padding, J. T.
    Clercx, H. J. H.
    Kuipers, J. A. M.
    CHEMICAL ENGINEERING SCIENCE, 2015, 134 : 312 - 323
  • [43] Three-dimensional synthetic aperture particle image velocimetry
    Belden, Jesse
    Truscott, Tadd T.
    Axiak, Michael C.
    Techet, Alexandra H.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2010, 21 (12)
  • [45] Low-magnification particle positioning for 3D velocimetry applications
    Sosa, PP
    Moreno, D
    Guerrero, JA
    Funes-Gallanzi, M
    OPTICS AND LASER TECHNOLOGY, 2002, 34 (01): : 59 - 68
  • [46] 3D particle tracking velocimetry using dynamic discrete tomography
    Alpers, Andreas
    Gritzmann, Peter
    Moseev, Dmitry
    Salewski, Mirko
    COMPUTER PHYSICS COMMUNICATIONS, 2015, 187 : 130 - 136
  • [47] Evaluation of patients with a HeartMate 3 left ventricular assist device using echocardiographic particle image velocimetry
    Schinkel, Arend F. L.
    Akin, Sakir
    Strachinaru, Mihai
    Muslem, Rahatullah
    Bowen, Dan
    Yalcin, Yunus C.
    Brugts, Jasper J.
    Constantinescu, Alina A.
    Manintveld, Olivier C.
    Caliskan, Kadir
    JOURNAL OF ULTRASOUND, 2021, 24 (04) : 499 - 503
  • [48] Thermographic 3D particle tracking velocimetry for turbulent gas flows
    Stelter, Moritz
    Martins, Fabio J. W. A.
    Beyrau, Frank
    Fond, Benoit
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (07)
  • [49] 3D particle sizing, thermometry and velocimetry of combusting aluminized propellants
    Wang, Qian
    Huang, Jianqing
    Liu, Hecong
    Qin, Zhao
    Cai, Weiwei
    COMBUSTION AND FLAME, 2023, 247
  • [50] Evaluation of patients with a HeartMate 3 left ventricular assist device using echocardiographic particle image velocimetry
    Arend F. L. Schinkel
    Sakir Akin
    Mihai Strachinaru
    Rahatullah Muslem
    Dan Bowen
    Yunus C. Yalcin
    Jasper J. Brugts
    Alina A. Constantinescu
    Olivier C. Manintveld
    Kadir Caliskan
    Journal of Ultrasound, 2021, 24 : 499 - 503