A framework for synthetic validation of 3D echocardiographic particle image velocimetry

被引:0
|
作者
Ahmad Falahatpisheh
Arash Kheradvar
机构
[1] University of California,Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Engineering
[2] Irvine,undefined
来源
Meccanica | 2017年 / 52卷
关键词
Particle image velocimetry; Hill’s spherical vortex; Echocardiography; Brightness field; Echo-PIV;
D O I
暂无
中图分类号
学科分类号
摘要
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document} and a given 3D brightness field B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}. The method begins with computing the inverse flow V∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}^{\varvec{*}} $$\end{document} based on the velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}. Then the transformation of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}, imposed by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}, is calculated using the computed inverse flow according to B∗x=Bx+V∗x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)$$\end{document}, where x is the coordinates of voxels in B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document}, with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document} and the generated B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document} are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.
引用
收藏
页码:555 / 561
页数:6
相关论文
共 50 条
  • [31] Volumetric Echocardiographic Particle Image Velocimetry (V-Echo-PIV)
    Falahatpisheh, Ahmad
    Kheradvar, Arash
    CIRCULATION, 2014, 130
  • [32] Echocardiographic particle image velocimetry in diastolic dysfunction due to hypertrophic cardiomyopathy
    Prinz, C.
    Lehmann, R.
    Jurczak, B.
    Van Buuren, F.
    Bogunovic, N.
    Horstkotte, D.
    Faber, L.
    EUROPEAN JOURNAL OF HEART FAILURE, 2013, 12 : S143 - S144
  • [33] Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing
    Kenneth I. Aycock
    Prasanna Hariharan
    Brent A. Craven
    Experiments in Fluids, 2017, 58
  • [34] Particle image velocimetry measurements in an anatomical vascular model fabricated using inkjet 3D printing
    Aycock, Kenneth I.
    Hariharan, Prasanna
    Craven, Brent A.
    EXPERIMENTS IN FLUIDS, 2017, 58 (11)
  • [35] Soft stereolithographic 3D printed phantoms for dual-modality particle image velocimetry (PIV)
    Hosseinzadeh, Elnaz
    Mirgolbabaee, Hadi
    van de Velde, Lennart
    Versluis, Michel
    Jebbink, Erik Groot
    Aguirre-Soto, Alan
    Reijnen, Michel M. P. J.
    EXPERIMENTS IN FLUIDS, 2025, 66 (01)
  • [36] Measuring the 3D wake of swimming snakes (Natrix tessellata) using volumetric particle image velocimetry
    Stin, Vincent
    Godoy-Diana, Ramiro
    Bonnet, Xavier
    Herrel, Anthony
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2023, 226 (13):
  • [37] Identification of hydrodynamic forces around 3D surrogates using particle image velocimetry in a microfluidic channel
    Afshar, Sepideh
    Nath, Shubhankar
    Demirci, Utkan
    Hasan, Tayyaba
    Scarcelli, Giuliano
    Rizvi, Imran
    Franco, Walfre
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XVI, 2018, 10491
  • [38] Particle image velocimetry on simulated 3D ultrafast ultrasound from pediatric matrix TEE transducers
    Voorneveld, J. D.
    Bera, D.
    van der Steen, A. F. W.
    de Jong, N.
    Bosch, J. G.
    MEDICAL IMAGING 2017: ULTRASONIC IMAGING AND TOMOGRAPHY, 2017, 10139
  • [39] Contrast 3D Echocardiographic Segmentation by Image Inversion
    Nasim, Ammara
    Idrees, Muhammad Qamar
    Rajpoot, Kashif
    17TH IEEE INTERNATIONAL MULTI TOPIC CONFERENCE 2014, 2014, : 177 - 181
  • [40] 2D μ-Particle Image Velocimetry and Computational Fluid Dynamics Study Within a 3D Porous Scaffold
    Marin, A. Campos
    Grossi, T.
    Bianchi, E.
    Dubini, G.
    Lacroix, D.
    ANNALS OF BIOMEDICAL ENGINEERING, 2017, 45 (05) : 1341 - 1351