A framework for synthetic validation of 3D echocardiographic particle image velocimetry

被引:0
|
作者
Ahmad Falahatpisheh
Arash Kheradvar
机构
[1] University of California,Department of Biomedical Engineering, Edwards Lifesciences Center for Advanced Cardiovascular Engineering
[2] Irvine,undefined
来源
Meccanica | 2017年 / 52卷
关键词
Particle image velocimetry; Hill’s spherical vortex; Echocardiography; Brightness field; Echo-PIV;
D O I
暂无
中图分类号
学科分类号
摘要
Particle image velocimetry (PIV) has been significantly advanced since its conception in early 1990s. With the advancement of imaging modalities, applications of 2D PIV have far expanded into biology and medicine. One example is echocardiographic particle image velocimetry that is used for in vivo mapping of the flow inside the heart chambers with opaque boundaries. Velocimetry methods can help better understanding the biomechanical problems. The current trend is to develop three-dimensional velocimetry techniques that take advantage of modern medical imaging tools. This study provides a novel framework for validation of velocimetry methods that are inherently three dimensional such as but not limited to those acquired by 3D echocardiography machines. This framework creates 3D synthetic fields based on a known 3D velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document} and a given 3D brightness field B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}. The method begins with computing the inverse flow V∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}^{\varvec{*}} $$\end{document} based on the velocity field V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}. Then the transformation of B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document}, imposed by V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{V}}$$\end{document}, is calculated using the computed inverse flow according to B∗x=Bx+V∗x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} \left( {\mathbf{x}} \right) = {\mathbf{B}}\left( {{\mathbf{x}} + {\mathbf{V}}^{\varvec{*}} \left( {\mathbf{x}} \right)} \right)$$\end{document}, where x is the coordinates of voxels in B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document}, with a 3D weighted average interpolation, which provides high accuracy, low memory requirement, and low computational time. To check the validity of the framework, we generate pairs of 3D brightness fields by employing Hill’s spherical vortex velocity field. B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}$$\end{document} and the generated B∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf{B}}^{\varvec{*}} $$\end{document} are then processed by our in-house 3D particle image velocimetry software to obtain the interrelated velocity field. The results indicates that the computed and imposed velocity fields are in agreement.
引用
收藏
页码:555 / 561
页数:6
相关论文
共 50 条
  • [21] A genetic algorithm particle pairing technique for 3D velocity field extraction in holographic particle image velocimetry
    Sheng, J
    Meng, H
    EXPERIMENTS IN FLUIDS, 1998, 25 (5-6) : 461 - 473
  • [22] 3D Particle image velocimetry test of inner flow in a double blade pump impeller
    Houlin Liu
    Kai Wang
    Shouqi Yuan
    Minggao Tan
    Yong Wang
    Weimin Ru
    Chinese Journal of Mechanical Engineering, 2012, 25 : 491 - 497
  • [23] Swirling Flow in Tubes with Sudden Expansion by Using 3D Particle Image Velocimetry Technique
    Chang, Tae-Hyun
    Lee, Chang-Hoan
    COMPUTER APPLICATIONS FOR WEB, HUMAN COMPUTER INTERACTION, SIGNAL AND IMAGE PROCESSING AND PATTERN RECOGNITION, 2012, 342 : 90 - +
  • [24] 3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller
    LIU HoulinWANG KaiYUAN ShouqiTAN MinggaoWANG Yongand RU Weimin Research Center of Fluid Machinery Engineering and TechnologyJiangsu UniversityZhenjiang China
    Chinese Journal of Mechanical Engineering, 2012, 25 (03) : 491 - 497
  • [25] Experimental Analysis of the 3D Flow Field of a Virtual Stent Using Particle Image Velocimetry
    Chen, Yu
    Guo, Meng
    Xiong, Yan
    Jiang, Wentao
    Yan, Fei
    Wang, Qingyuan
    Fan, Yubo
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2015, 5 (01) : 16 - 23
  • [26] Digital holographic particle image velocimetry: 3D velocity field extraction using correlation
    Fournier, Corinne
    Ducottet, Christophe
    Fournel, Thierry
    Journal of Flow Visualization and Image Processing, 2004, 11 (01) : 53 - 72
  • [28] 3D Particle Image Velocimetry Test of Inner Flow in a Double Blade Pump Impeller
    Liu Houlin
    Wang Kai
    Yuan Shouqi
    Tan Minggao
    Wang Yong
    Ru Weimin
    CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2012, 25 (03) : 491 - 497
  • [29] Particle image velocimetry validation for quantifying bedload movement
    Mustafa, Muhammed T.
    Cox, Amanda L.
    Mitchell, Kyle
    JOURNAL OF APPLIED WATER ENGINEERING AND RESEARCH, 2019, 7 (04): : 263 - 272
  • [30] Validation of Echodynamography in Comparison with Particle-image Velocimetry
    Oktamuliani, Sri
    Kanno, Naoya
    Maeda, Moe
    Hasegawa, Kaoru
    Saijo, Yoshifumi
    ULTRASONIC IMAGING, 2019, 41 (06) : 336 - 352