Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model

被引:0
|
作者
Chenchen Zhao
Chengshuai Liu
Wenzhong Li
Yehai Tang
Fan Yang
Yingying Xu
Liyu Quan
Caihong Hu
机构
[1] Zhengzhou University,Yellow River Laboratory
来源
关键词
LSTM; SWMM; Urban Flood; Hydrologic elements;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes a novel hybrid LSTM-SWMM model that integrates the advantages of the SWMM model and the LSTM neural network for the first time. The aim is to build an efficient and rapid model that considers the physical mechanism, in order to effectively simulate urban floods. The results indicate a good agreement between the simulated discharge process of the LSTM-SWMM model and the observed discharge process during the training and testing periods, reflecting the actual rainfall runoff process. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM-SWMM model is 0.969, while the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM model is 0.954. Additionally, for a forecasting period of 1, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model is 0.967, representing the highest forecasting accuracy. However, for a forecasting period of 6, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model decreases to 0.939, indicating lower accuracy. As the forecasting period increases, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} values consistently decrease, leading to a gradual decrease in accuracy.
引用
收藏
页码:5171 / 5187
页数:16
相关论文
共 50 条
  • [41] Urban scale flood simulation based on dynamic wave
    Wang, Ziming
    Wang, Bin
    Zeng, Jian
    Hu, Jinchun
    Zhou, Shengzhi
    Long, Ye
    Liu, Yun
    Wang, Yuehua
    2020 4TH INTERNATIONAL WORKSHOP ON RENEWABLE ENERGY AND DEVELOPMENT (IWRED 2020), 2020, 510
  • [42] Simulation of Urban Flood in Jinan City Based on Caflood
    Feng, Shiyuan
    Li, Qingguo
    PROCEEDINGS OF THE 2017 6TH INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL PROTECTION (ICEEP 2017), 2017, 143 : 1427 - 1430
  • [43] A model based approach for the analysis and simulation of a hybrid bus in an urban context
    Gruosso G.
    Bascetta L.
    Gruosso, Giambattista (giambattista.gruosso@polimi.it), 2018, Inderscience Publishers (04): : 222 - 236
  • [44] A Hybrid Model for Fast and Probabilistic Urban Pluvial Flood Prediction
    Li, Xiaohan
    Willems, Patrick
    WATER RESOURCES RESEARCH, 2020, 56 (06)
  • [45] Urban flood depth prediction using an improved LSTM model incorporating precipitation forecasting
    Huang, Jing
    Hong, Yonghang
    Sun, Dianchen
    NATURAL HAZARDS, 2025,
  • [46] Carlisle 2005 urban flood event simulation using cellular automata-based rapid flood spreading model
    Liu, Yang
    Pender, Gareth
    SOFT COMPUTING, 2013, 17 (01) : 29 - 37
  • [47] Carlisle 2005 urban flood event simulation using cellular automata-based rapid flood spreading model
    Yang Liu
    Gareth Pender
    Soft Computing, 2013, 17 : 29 - 37
  • [48] RETRACTED: Language Processing Model Construction and Simulation Based on Hybrid CNN and LSTM (Retracted Article)
    Zhang, Shujing
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021
  • [49] Urban hydrological model (UHM) developed for an urban flash flood simulation and analysis of the flood intensity sensitivity to urbanization
    Hu, HaiBo
    Yu, Miao
    Zhang, Xiya
    Wang, Ying
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)
  • [50] Simulation and Evaluation of Low Impact Development of Urban Residential District Based on SWMM and GIS
    Huang, Tielan
    Wang, Yunpeng
    Zhang, Jinlan
    3RD INTERNATIONAL SYMPOSIUM ON EARTH OBSERVATION FOR ARID AND SEMI-ARID ENVIRONMENTS (ISEO2016), 2017, 74