Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model

被引:0
|
作者
Chenchen Zhao
Chengshuai Liu
Wenzhong Li
Yehai Tang
Fan Yang
Yingying Xu
Liyu Quan
Caihong Hu
机构
[1] Zhengzhou University,Yellow River Laboratory
来源
关键词
LSTM; SWMM; Urban Flood; Hydrologic elements;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes a novel hybrid LSTM-SWMM model that integrates the advantages of the SWMM model and the LSTM neural network for the first time. The aim is to build an efficient and rapid model that considers the physical mechanism, in order to effectively simulate urban floods. The results indicate a good agreement between the simulated discharge process of the LSTM-SWMM model and the observed discharge process during the training and testing periods, reflecting the actual rainfall runoff process. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM-SWMM model is 0.969, while the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM model is 0.954. Additionally, for a forecasting period of 1, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model is 0.967, representing the highest forecasting accuracy. However, for a forecasting period of 6, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model decreases to 0.939, indicating lower accuracy. As the forecasting period increases, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} values consistently decrease, leading to a gradual decrease in accuracy.
引用
收藏
页码:5171 / 5187
页数:16
相关论文
共 50 条
  • [21] Application Research of SWMM in the Simulation of Large-Scale Urban Rain Flood Process-A Case Study of Yizhuang District, China
    Fu, Xiaoran
    Luan, Qinghua
    Wang, Haichao
    Liu, Jiahong
    Gao, Xuerui
    SUSTAINABLE DEVELOPMENT OF WATER RESOURCES AND HYDRAULIC ENGINEERING IN CHINA, 2019, : 251 - 260
  • [22] Urban drainage efficiency evaluation and flood simulation using integrated SWMM and terrain structural analysis
    Zhang, Xuelian
    Kang, Aiqing
    Lei, Xiaohui
    Wang, Hao
    Science of the Total Environment, 2024, 957
  • [23] Research on urban block waterlogging simulation based on coupling model of SWMM and LISFLOOD-FP
    Lu X.
    Xu Z.
    Li Y.
    Hu X.
    Tang Q.
    Song P.
    Water Resources Protection, 2024, 40 (03) : 98 - 105and124
  • [24] Decrease process analysis of urban system resilience based on the extreme flood simulation
    Li Yabo
    Wang Peng
    6TH INTERNATIONAL CONFERENCE ON ADVANCES IN ENERGY RESOURCES AND ENVIRONMENT ENGINEERING, 2021, 647
  • [25] Study on Flood Control in Multi-LID Model Based on SWMM
    Sun, Bo
    Xie, Shuibo
    Wang, Zhiyuan
    Wu, Haoyi
    Liu, Hui
    INTERNATIONAL LOW IMPACT DEVELOPMENT CONFERENCE 2020 - SETTING THE VISION FOR THE NEXT TWENTY YEARS, 2020, : 30 - 43
  • [26] Simulation of coal gasification process based on hybrid model
    Fang X.
    An H.
    Liu Z.
    Li Y.
    Sun K.
    Peng B.
    Meitan Xuebao/Journal of the China Coal Society, 2023, 48 (09): : 3554 - 3561
  • [27] GIS-based SWMM model for simulating the catchment response to flood events
    Rai, Pawan Kumar
    Chahar, B. R.
    Dhanya, C. T.
    HYDROLOGY RESEARCH, 2017, 48 (02): : 384 - 394
  • [28] Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach (vol 105, pg 3, 2018)
    Babaei, Sahar
    Ghazavi, Reza
    Erfanian, Mahdi
    PHYSICS AND CHEMISTRY OF THE EARTH, 2020, 116
  • [29] Efficient simulation of urban flood inundation based on Taihu Lake basin model
    Wang C.
    Zheng S.
    Li X.
    Chen K.
    Zhai Y.
    Hua C.
    Wang S.
    Chen G.
    Shuikexue Jinzhan/Advances in Water Science, 2022, 33 (03): : 462 - 473
  • [30] A hybrid model based on CNN and Bi-LSTM for urban water demand prediction
    Hu, Piao
    Tong, Jun
    Wang, Jingcheng
    Yang, Yue
    Turci, Luca de Oliveira
    2019 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2019, : 1088 - 1094