Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model

被引:0
|
作者
Chenchen Zhao
Chengshuai Liu
Wenzhong Li
Yehai Tang
Fan Yang
Yingying Xu
Liyu Quan
Caihong Hu
机构
[1] Zhengzhou University,Yellow River Laboratory
来源
关键词
LSTM; SWMM; Urban Flood; Hydrologic elements;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes a novel hybrid LSTM-SWMM model that integrates the advantages of the SWMM model and the LSTM neural network for the first time. The aim is to build an efficient and rapid model that considers the physical mechanism, in order to effectively simulate urban floods. The results indicate a good agreement between the simulated discharge process of the LSTM-SWMM model and the observed discharge process during the training and testing periods, reflecting the actual rainfall runoff process. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM-SWMM model is 0.969, while the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM model is 0.954. Additionally, for a forecasting period of 1, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model is 0.967, representing the highest forecasting accuracy. However, for a forecasting period of 6, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model decreases to 0.939, indicating lower accuracy. As the forecasting period increases, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} values consistently decrease, leading to a gradual decrease in accuracy.
引用
收藏
页码:5171 / 5187
页数:16
相关论文
共 50 条
  • [31] Partition adaptive model of urban rainstorm and flood process based on the simulation concept of plots generalization and road networks fine
    Li D.
    Hou J.
    Shen R.
    Gao X.
    Huang M.
    Ma Y.
    Shuikexue Jinzhan/Advances in Water Science, 2023, 34 (02): : 197 - 208
  • [32] Application of SWMM model and image recognition in virtual simulation of urban architectural landscape
    Zhu, Jiang
    OPTIK, 2023, 273
  • [33] BK-SWMM flood simulation framework is being proposed for urban storm flood modeling based on uncertainty parameter crowdsourcing data from a single functional region
    Liu, Chengshuai
    Li, Wenzhong
    Zhao, Chenchen
    Xie, Tianning
    Jian, Shengqi
    Wu, Qiang
    Xu, Yingying
    Hu, Caihong
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 344
  • [34] Research on Urban Storm Flood Simulation by Coupling K-means Machine Learning Algorithm and GIS Spatial Analysis Technology into SWMM Model
    Chengshuai Liu
    Caihong Hu
    Chenchen Zhao
    Yue Sun
    Tianning Xie
    Huiliang Wang
    Water Resources Management, 2024, 38 : 2059 - 2078
  • [35] Research on Urban Storm Flood Simulation by Coupling K-means Machine Learning Algorithm and GIS Spatial Analysis Technology into SWMM Model
    Liu, Chengshuai
    Hu, Caihong
    Zhao, Chenchen
    Sun, Yue
    Xie, Tianning
    Wang, Huiliang
    WATER RESOURCES MANAGEMENT, 2024, 38 (06) : 2059 - 2078
  • [36] Urban rainstorm and waterlogging scenario simulation based on SWMM under changing environment
    Simin Wang
    Rengui Jiang
    Mingxiang Yang
    Jiancang Xie
    Yinping Wang
    Wen Li
    Environmental Science and Pollution Research, 2023, 30 : 123351 - 123367
  • [37] Bayes_Opt-SWMM: : A Gaussian process-based Bayesian optimization tool for real-time flood modeling with SWMM
    Tanim, Ahad Hasan
    Smith-Lewis, Corinne
    Downey, Austin R. J.
    Imran, Jasim
    Goharian, Erfan
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 179
  • [38] Urban rainstorm and waterlogging scenario simulation based on SWMM under changing environment
    Wang, Simin
    Jiang, Rengui
    Yang, Mingxiang
    Xie, Jiancang
    Wang, Yinping
    Li, Wen
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (59) : 123259 - 123273
  • [39] WRF-Hydro-CUFA: A scalable and adaptable coastal-urban flood model based on the WRF-Hydro and SWMM models
    Son, Youngjun
    Di Lorenzo, Emanuele
    Luo, Jian
    ENVIRONMENTAL MODELLING & SOFTWARE, 2023, 167
  • [40] Urban flood submerging simulation analysis based on GIS
    Xiang, Suyu
    Chen, Jun
    Wei, Wenqiu
    Diqiu Kexue Zhongguo Dizhi Daxue Xuebao/Earth Science - Journal of China University of Geoscinces, 1995, 20 (05):