Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model

被引:0
|
作者
Chenchen Zhao
Chengshuai Liu
Wenzhong Li
Yehai Tang
Fan Yang
Yingying Xu
Liyu Quan
Caihong Hu
机构
[1] Zhengzhou University,Yellow River Laboratory
来源
关键词
LSTM; SWMM; Urban Flood; Hydrologic elements;
D O I
暂无
中图分类号
学科分类号
摘要
This study proposes a novel hybrid LSTM-SWMM model that integrates the advantages of the SWMM model and the LSTM neural network for the first time. The aim is to build an efficient and rapid model that considers the physical mechanism, in order to effectively simulate urban floods. The results indicate a good agreement between the simulated discharge process of the LSTM-SWMM model and the observed discharge process during the training and testing periods, reflecting the actual rainfall runoff process. The R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM-SWMM model is 0.969, while the R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} of the LSTM model is 0.954. Additionally, for a forecasting period of 1, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model is 0.967, representing the highest forecasting accuracy. However, for a forecasting period of 6, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} value of the LSTM-SWMM model decreases to 0.939, indicating lower accuracy. As the forecasting period increases, the NSE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NSE$$\end{document} values consistently decrease, leading to a gradual decrease in accuracy.
引用
收藏
页码:5171 / 5187
页数:16
相关论文
共 50 条
  • [1] Simulation of Urban Flood Process Based on a Hybrid LSTM-SWMM Model
    Zhao, Chenchen
    Liu, Chengshuai
    Li, Wenzhong
    Tang, Yehai
    Yang, Fan
    Xu, Yingying
    Quan, Liyu
    Hu, Caihong
    WATER RESOURCES MANAGEMENT, 2023, 37 (13) : 5171 - 5187
  • [2] Urban flood simulation based on the SWMM model
    Jiang, Lei
    Chen, Yangbo
    Wang, Huanyu
    REMOTE SENSING AND GIS FOR HYDROLOGY AND WATER RESOURCES, 2015, 368 : 186 - 191
  • [3] Rapid simulation of urban rainstorm flood based on WCA2D and SWMM model
    Zeng Z.
    Lai C.
    Wang Z.
    Wu X.
    Huang G.
    Hu Q.
    Wang, Zhaoli (wangzhl@scut.edu.cn), 1600, International Research and Training Center on Erosion and Sedimentation and China Water and Power Press (31): : 29 - 38
  • [4] Process-oriented SWMM real-time correction and urban flood dynamic simulation
    Ma, Bingyan
    Wu, Zening
    Hu, Caihong
    Wang, Huiliang
    Xu, Hongshi
    Yan, Denghua
    Soomro, Shan-e-hyder
    JOURNAL OF HYDROLOGY, 2022, 605
  • [5] A tight coupling model for urban flood simulation based on SWMM and TELEMAC-2D and the uncertainty analysis
    Wang, Zhaoli
    Chen, Yuhong
    Zeng, Zhaoyang
    Chen, Xiaohong
    Li, Xiangyang
    Jiang, Xiaotian
    Lai, Chengguang
    SUSTAINABLE CITIES AND SOCIETY, 2024, 114
  • [6] Flood simulation and risk analysis on urban block scale based on swmm and infoworks icm
    Ye C.
    Xu Z.
    Lei X.
    Chen Y.
    Ding X.
    Liang Y.
    Water Resources Protection, 2023, 39 (02) : 87 - 94
  • [7] Urban rainstorm flood rapid simulation method based on BIC-KMeans and SWMM
    Liu C.
    Han Z.
    Li X.
    Sun Y.
    Tang Y.
    Hou D.
    Hu C.
    Water Resources Protection, 2023, 39 (05) : 79 - 87
  • [8] Simulation of urban flood using the SWMM with the hierarchical catchment partition method
    Wang X.
    Xia J.
    Dong B.
    Hou J.
    Li Q.
    Shuikexue Jinzhan/Advances in Water Science, 2022, 33 (02): : 196 - 207
  • [9] Development of an urban rainstorm flood simulation model based on a plain flood model
    Su, Bo-Ni
    Huang, Hong
    Zhang, Nan
    Zhao, Jin-Long
    CIVIL ENGINEERING AND URBAN PLANNING IV, 2016, : 443 - 447
  • [10] Urban flood simulation and prioritization of critical urban sub-catchments using SWMM model and PROMETHEE II approach
    Babaei, Sahar
    Ghazavi, Reza
    Erfanian, Mahdi
    PHYSICS AND CHEMISTRY OF THE EARTH, 2018, 105 : 3 - 11