The Dirac Operator on Generalized Taub-NUT Spaces

被引:0
|
作者
Andrei Moroianu
Sergiu Moroianu
机构
[1] École Polytechnique,Centre de Mathématiques
[2] Institutul de Matematică al Academiei Române,undefined
[3] Şcoala Normală Superioară Bucharest,undefined
来源
关键词
Manifold; Line Bundle; Dirac Operator; Spin Structure; Conformal Factor;
D O I
暂无
中图分类号
学科分类号
摘要
We find sufficient conditions for the absence of harmonic L2 spinors on spin manifolds constructed as cone bundles over a compact Kähler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vişinescu and the second author.
引用
收藏
页码:641 / 656
页数:15
相关论文
共 50 条