The Dirac Operator on Generalized Taub-NUT Spaces

被引:0
|
作者
Andrei Moroianu
Sergiu Moroianu
机构
[1] École Polytechnique,Centre de Mathématiques
[2] Institutul de Matematică al Academiei Române,undefined
[3] Şcoala Normală Superioară Bucharest,undefined
来源
关键词
Manifold; Line Bundle; Dirac Operator; Spin Structure; Conformal Factor;
D O I
暂无
中图分类号
学科分类号
摘要
We find sufficient conditions for the absence of harmonic L2 spinors on spin manifolds constructed as cone bundles over a compact Kähler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vişinescu and the second author.
引用
收藏
页码:641 / 656
页数:15
相关论文
共 50 条
  • [1] The Dirac Operator on Generalized Taub-NUT Spaces
    Moroianu, Andrei
    Moroianu, Sergiu
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 305 (03) : 641 - 656
  • [2] Dirac spinor waves and solitons in anisotropic Taub-NUT spaces
    Vacaru, SI
    Popa, FC
    CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (22) : 4921 - 4938
  • [3] Finiteness of the L2-index of the Dirac operator of generalized Euclidean Taub-NUT metrics
    Moroianu, Sergiu
    Visinescu, Mihai
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (21): : 6575 - 6581
  • [4] Taub-NUT from the Dirac monopole
    Godazgar, Hadi
    Godazgar, Mahdi
    Pope, C. N.
    PHYSICS LETTERS B, 2019, 798
  • [5] Runge-Lenz operator for Dirac field in Taub-NUT background
    Cotaescu, II
    Visinescu, M
    PHYSICS LETTERS B, 2001, 502 (1-4) : 229 - 234
  • [6] The Dirac equation in Taub-NUT space
    Comtet, A.
    Horvathy, P. A.
    Physics Letters. Section B: Nuclear, Elementary Particle and High-Energy Physics, 349 (1-2):
  • [7] The Dirac field in Taub-NUT background
    Cotaescu, II
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2001, 16 (10): : 1743 - 1758
  • [8] THE DIRAC-EQUATION IN TAUB-NUT SPACE
    COMTET, A
    HORVATHY, PA
    PHYSICS LETTERS B, 1995, 349 (1-2) : 49 - 56
  • [9] Branes, instantons, and Taub-NUT spaces
    Witten, Edward
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [10] On Kahler structures of Taub-Nut and kerr spaces
    Kelekci, Ozgur
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (02)