The Dirac Operator on Generalized Taub-NUT Spaces

被引:0
|
作者
Andrei Moroianu
Sergiu Moroianu
机构
[1] École Polytechnique,Centre de Mathématiques
[2] Institutul de Matematică al Academiei Române,undefined
[3] Şcoala Normală Superioară Bucharest,undefined
来源
关键词
Manifold; Line Bundle; Dirac Operator; Spin Structure; Conformal Factor;
D O I
暂无
中图分类号
学科分类号
摘要
We find sufficient conditions for the absence of harmonic L2 spinors on spin manifolds constructed as cone bundles over a compact Kähler base. These conditions are fulfilled for certain perturbations of the Euclidean metric, and also for the generalized Taub-NUT metrics of Iwai-Katayama, thus proving a conjecture of Vişinescu and the second author.
引用
收藏
页码:641 / 656
页数:15
相关论文
共 50 条
  • [31] Generalized Taub-NUT metrics and Killing-Yano tensors
    Visinescu, M
    NONCOMMUTATIVE STRUCTURES IN MATHEMATICS AND PHYSICS, 2001, 22 : 441 - 452
  • [32] Dirac operators on the Taub-NUT space, monopoles and SU(2) representations
    Rogelio Jante
    Bernd J. Schroers
    Journal of High Energy Physics, 2014
  • [33] Fermions in Taub-NUT background
    Visinescu, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7): : 1049 - 1054
  • [34] TAUB-NUT INSTANTON WITH AN HORIZON
    PAGE, DN
    PHYSICS LETTERS B, 1978, 78 (2-3) : 249 - 251
  • [35] Magnetized Taub-NUT spacetime
    Siahaan, Haryanto M.
    NUCLEAR PHYSICS B, 2022, 978
  • [36] Instantons on the Taub-NUT space
    Cherkis, Sergey A.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2010, 14 (02) : 609 - 641
  • [37] On the Taub-NUT spinning space
    Visinescu, M
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2000, 48 (1-3): : 229 - 232
  • [38] Generalized Kahler Taub-NUT metrics and two exceptional instantons
    Weber, Brian
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2022, 30 (07) : 1575 - 1632
  • [39] Holography and quaternionic Taub-NUT
    Zoubos, K
    JOURNAL OF HIGH ENERGY PHYSICS, 2002, (12):
  • [40] Generalized Taub-NUT metrics and Killing-Yano tensors
    Visinescu, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (23): : 4383 - 4391