KMS States on the Operator Algebras of Reducible Higher-Rank Graphs

被引:0
|
作者
Astrid an Huef
Sooran Kang
Iain Raeburn
机构
[1] University of Otago,Department of Mathematics and Statistics
[2] Sungkyunkwan University,Department of Mathematics
[3] University of Otago,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2017年 / 88卷
关键词
Higher-rank graph; Toeplitz ; -algebra; KMS state; 46L30; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equilibrium or KMS states of the Toeplitz C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra of a finite higher-rank graph which is reducible. The Toeplitz algebra carries a gauge action of a higher-dimensional torus, and a dynamics arises by choosing an embedding of the real numbers in the torus. Here we use an embedding which leads to a dynamics which has previously been identified as “preferred”, and we scale the dynamics so that 1 is a critical inverse temperature. As with 1-graphs, we study the strongly connected components of the vertices of the graph. The behaviour of the KMS states depends on both the graphical relationships between the components and the relative size of the spectral radii of the vertex matrices of the components. We test our theorems on graphs with two connected components. We find that our techniques give a complete analysis of the KMS states with inverse temperatures down to a second critical temperature βc<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _c<1$$\end{document}.
引用
收藏
页码:91 / 126
页数:35
相关论文
共 50 条
  • [41] Spectral triples and wavelets for higher-rank graphs
    Farsi, Carla
    Gillaspy, Elizabeth
    Julien, Antoine
    Kang, Sooran
    Packer, Judith
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
  • [42] KMS states on the C*-algebras of finite graphs
    Huef, Astrid An
    Laca, Marcelo
    Raeburn, Iain
    Sims, Aidan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 388 - 399
  • [43] Higher-rank Brill-Noether loci on nodal reducible curves
    Brivio, Sonia
    Favale, Filippo F.
    GEOMETRIAE DEDICATA, 2023, 217 (02)
  • [44] Higher-rank Brill-Noether loci on nodal reducible curves
    Sonia Brivio
    Filippo F. Favale
    Geometriae Dedicata, 2023, 217
  • [45] Simplicity of C*-algebras associated to row-finite locally convex higher-rank graphs
    Robertson, David
    Sims, Aidan
    ISRAEL JOURNAL OF MATHEMATICS, 2009, 172 (01) : 171 - 192
  • [46] BRANCHING SYSTEMS FOR HIGHER-RANK GRAPH C*-ALGEBRAS
    Goncalves, Daniel
    Li, Hui
    Royer, Danilo
    GLASGOW MATHEMATICAL JOURNAL, 2018, 60 (03) : 731 - 751
  • [47] Entropy of shifts on higher-rank graph C*-algebras
    Skalski, Adam
    Zacharias, Joachim
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (01): : 269 - 282
  • [48] SPECTRAL TRIPLES FOR HIGHER-RANK GRAPH C*-ALGEBRAS
    Farsi, Carla
    Gillaspy, Elizabeth
    Julien, Antoine
    Kang, Sooran
    Packer, Judith
    MATHEMATICA SCANDINAVICA, 2020, 126 (02) : 321 - 338
  • [49] TOPOLOGICAL REALIZATIONS AND FUNDAMENTAL GROUPS OF HIGHER-RANK GRAPHS
    Kaliszewski, S.
    Kumjian, Alex
    Quigg, John
    Sims, Aidan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 143 - 168
  • [50] Higher-rank isomonodromic deformations and W-algebras
    Gavrylenko, Pavlo
    Iorgov, Nikolai
    Lisovyy, Oleg
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (02) : 327 - 364