KMS States on the Operator Algebras of Reducible Higher-Rank Graphs

被引:0
|
作者
Astrid an Huef
Sooran Kang
Iain Raeburn
机构
[1] University of Otago,Department of Mathematics and Statistics
[2] Sungkyunkwan University,Department of Mathematics
[3] University of Otago,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2017年 / 88卷
关键词
Higher-rank graph; Toeplitz ; -algebra; KMS state; 46L30; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equilibrium or KMS states of the Toeplitz C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra of a finite higher-rank graph which is reducible. The Toeplitz algebra carries a gauge action of a higher-dimensional torus, and a dynamics arises by choosing an embedding of the real numbers in the torus. Here we use an embedding which leads to a dynamics which has previously been identified as “preferred”, and we scale the dynamics so that 1 is a critical inverse temperature. As with 1-graphs, we study the strongly connected components of the vertices of the graph. The behaviour of the KMS states depends on both the graphical relationships between the components and the relative size of the spectral radii of the vertex matrices of the components. We test our theorems on graphs with two connected components. We find that our techniques give a complete analysis of the KMS states with inverse temperatures down to a second critical temperature βc<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _c<1$$\end{document}.
引用
收藏
页码:91 / 126
页数:35
相关论文
共 50 条
  • [21] STRUCTURE THEORY AND STABLE RANK FOR C*-ALGEBRAS OF FINITE HIGHER-RANK GRAPHS
    Pask, David
    Sierakowski, Adam
    Sims, Aidan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2021, 64 (04) : 822 - 847
  • [22] KMS states on the C*-algebra of a higher-rank graph and periodicity in the path space
    Huef, Astrid An
    Laca, Marcelo
    Raeburn, Iain
    Sims, Aidan
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 268 (07) : 1840 - 1875
  • [23] A PROGRAM FOR FINDING ALL KMS STATES ON THE TOEPLITZ ALGEBRA OF A HIGHER-RANK GRAPH
    Fletcher, James
    Huff, Astrid An
    Raeburn, Iain
    JOURNAL OF OPERATOR THEORY, 2020, 83 (01) : 139 - 177
  • [24] Topological higher-rank graphs and the C*-algebras of topological 1-graphs
    Yeend, Trent
    Operator Theory, Operator Algebras, and Applications, 2006, 414 : 231 - 244
  • [25] A GENERALISATION OF HIGHER-RANK GRAPHS
    Lawson, Mark, V
    Vdovina, Alina
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2022, 105 (02) : 257 - 266
  • [26] Kumjian-Pask algebras of finitely aligned higher-rank graphs
    Clark, Lisa Orloff
    Pangalela, Yosafat E. P.
    JOURNAL OF ALGEBRA, 2017, 482 : 364 - 397
  • [27] Kumjian-Pask algebras of locally convex higher-rank graphs
    Clark, Lisa Orloff
    Flynn, Claire
    Huef, Astrid an
    JOURNAL OF ALGEBRA, 2014, 399 : 445 - 474
  • [28] TWISTED C*-ALGEBRAS ASSOCIATED TO FINITELY ALIGNED HIGHER-RANK GRAPHS
    Sims, Aidan
    Whitehead, Benjamin
    Whittaker, Michael F.
    DOCUMENTA MATHEMATICA, 2014, 19 : 831 - 866
  • [29] ORBIT EQUIVALENCE OF HIGHER-RANK GRAPHS
    Carlsen, Toke Meier
    Rout, James
    JOURNAL OF OPERATOR THEORY, 2021, 86 (02) : 395 - 424
  • [30] REMARKS ON SOME FUNDAMENTAL RESULTS ABOUT HIGHER-RANK GRAPHS AND THEIR C*-ALGEBRAS
    Hazlewood, Robert
    Raeburn, Iain
    Sims, Aidan
    Webster, Samuel B. G.
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2013, 56 (02) : 575 - 597