KMS States on the Operator Algebras of Reducible Higher-Rank Graphs

被引:0
|
作者
Astrid an Huef
Sooran Kang
Iain Raeburn
机构
[1] University of Otago,Department of Mathematics and Statistics
[2] Sungkyunkwan University,Department of Mathematics
[3] University of Otago,Department of Mathematics and Statistics
来源
Integral Equations and Operator Theory | 2017年 / 88卷
关键词
Higher-rank graph; Toeplitz ; -algebra; KMS state; 46L30; 46L55;
D O I
暂无
中图分类号
学科分类号
摘要
We study the equilibrium or KMS states of the Toeplitz C∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^*$$\end{document}-algebra of a finite higher-rank graph which is reducible. The Toeplitz algebra carries a gauge action of a higher-dimensional torus, and a dynamics arises by choosing an embedding of the real numbers in the torus. Here we use an embedding which leads to a dynamics which has previously been identified as “preferred”, and we scale the dynamics so that 1 is a critical inverse temperature. As with 1-graphs, we study the strongly connected components of the vertices of the graph. The behaviour of the KMS states depends on both the graphical relationships between the components and the relative size of the spectral radii of the vertex matrices of the components. We test our theorems on graphs with two connected components. We find that our techniques give a complete analysis of the KMS states with inverse temperatures down to a second critical temperature βc<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _c<1$$\end{document}.
引用
收藏
页码:91 / 126
页数:35
相关论文
共 50 条
  • [31] Relative Cuntz-Krieger algebras of finitely aligned higher-rank graphs
    Sims, A
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (02) : 849 - 868
  • [32] ON TWISTED HIGHER-RANK GRAPH C*-ALGEBRAS
    Kumjian, Alex
    Pask, David
    Sims, Aidan
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 367 (07) : 5177 - 5216
  • [33] Product-system models for twisted C*-algebras of topological higher-rank graphs
    Armstrong, Becky
    Brownlowe, Nathan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 466 (02) : 1443 - 1475
  • [34] Real Rank and Topological Dimension of Higher-Rank Graph Algebras
    Pask, David
    Sierakowski, Adam
    Sims, Aidan
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2017, 66 (06) : 2137 - 2168
  • [35] Ionescu's Theorem for Higher-Rank Graphs
    Kaliszewski, S.
    Morgan, Adam
    Quigg, John
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (06) : 1879 - 1901
  • [36] Gauge-invariant ideals in the C*-algebras of finitely aligned higher-rank graphs
    Sims, Aidan
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2006, 58 (06): : 1268 - 1290
  • [37] Topological spaces associated to higher-rank graphs
    Kumjian, Alex
    Pask, David
    Sims, Aidan
    Whittaker, Michael F.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 143 : 19 - 41
  • [38] Monic representations of finite higher-rank graphs
    Farsi, Carla
    Gillaspy, Elizabeth
    Jorgensen, Palle
    Kang, Sooran
    Packer, Judith
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (05) : 1238 - 1267
  • [39] Simplicity of twisted C*-algebras of higher-rank graphs and crossed products by quasifree actions
    Kumjian, Alex
    Pask, David
    Sims, Aidan
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (02) : 515 - 549
  • [40] Removing sources from higher-rank graphs
    Farthing, Cynthia
    JOURNAL OF OPERATOR THEORY, 2008, 60 (01) : 165 - 198