A linear-time algorithm for weighted paired-domination on block graphs

被引:0
|
作者
Ching-Chi Lin
Cheng-Yu Hsieh
Ta-Yu Mu
机构
[1] National Taiwan Ocean University,Department of Computer Science and Engineering
[2] National Taiwan University,Department of Computer Science and Information Engineering
来源
关键词
Weighted paired-domination; Perfect matching; Block graph; Dynamic programming;
D O I
暂无
中图分类号
学科分类号
摘要
In a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document}, a set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph of G induced by a subset S of V(G). A dominating set S of G is called a paired-dominating set of G if the induced subgraph G[S] contains a perfect matching. Suppose that, for each v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(G)$$\end{document}, we have a weight w(v) specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose total weights w(S)=∑v∈Sw(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(S) = \sum _{v \in S} {w(v)}$$\end{document} is minimized. In this paper, we propose an O(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+m)$$\end{document}-time algorithm for the weighted paired-domination problem on block graphs using dynamic programming, which strengthens the results in [Theoret Comput Sci 410(47–49):5063–5071, 2009] and [J Comb Optim 19(4):457–470, 2010]. Moreover, the algorithm can be completed in O(n) time if the block-cut-vertex structure of G is given.
引用
收藏
页码:269 / 286
页数:17
相关论文
共 50 条
  • [41] Paired-Domination Problem on Distance-Hereditary Graphs
    Ching-Chi Lin
    Keng-Chu Ku
    Chan-Hung Hsu
    Algorithmica, 2020, 82 : 2809 - 2840
  • [42] Graphs with maximum size and given paired-domination number
    Henning, Michael A.
    McCoy, John
    Southey, Justin
    DISCRETE APPLIED MATHEMATICS, 2014, 170 : 72 - 82
  • [43] Paired-domination in claw-free cubic graphs
    Favaron, O
    Henning, MA
    GRAPHS AND COMBINATORICS, 2004, 20 (04) : 447 - 456
  • [44] Paired-domination in P5-free graphs
    Dorbec, Paul
    Gravier, Sylvain
    GRAPHS AND COMBINATORICS, 2008, 24 (04) : 303 - 308
  • [45] Paired-domination in generalized claw-free graphs
    Paul Dorbec
    Sylvain Gravier
    Michael A. Henning
    Journal of Combinatorial Optimization, 2007, 14 : 1 - 7
  • [46] PAIRED- AND INDUCED PAIRED-DOMINATION IN {E, net}-FREE GRAPHS
    Schaudt, Oliver
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 473 - 485
  • [47] Paired-Domination in Claw-Free Cubic Graphs
    Odile Favaron
    Michael A. Henning
    Graphs and Combinatorics, 2004, 20 : 447 - 456
  • [48] Upper paired-domination in claw-free graphs
    Paul Dorbec
    Michael A. Henning
    Journal of Combinatorial Optimization, 2011, 22 : 235 - 251
  • [49] Paired-domination in generalized claw-free graphs
    Dorbec, Paul
    Gravier, Sylvain
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (01) : 1 - 7
  • [50] Paired-Domination in Subdivided Star-Free Graphs
    Paul Dorbec
    Sylvain Gravier
    Graphs and Combinatorics, 2010, 26 : 43 - 49