A linear-time algorithm for weighted paired-domination on block graphs

被引:0
|
作者
Ching-Chi Lin
Cheng-Yu Hsieh
Ta-Yu Mu
机构
[1] National Taiwan Ocean University,Department of Computer Science and Engineering
[2] National Taiwan University,Department of Computer Science and Information Engineering
来源
关键词
Weighted paired-domination; Perfect matching; Block graph; Dynamic programming;
D O I
暂无
中图分类号
学科分类号
摘要
In a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document}, a set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph of G induced by a subset S of V(G). A dominating set S of G is called a paired-dominating set of G if the induced subgraph G[S] contains a perfect matching. Suppose that, for each v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(G)$$\end{document}, we have a weight w(v) specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose total weights w(S)=∑v∈Sw(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(S) = \sum _{v \in S} {w(v)}$$\end{document} is minimized. In this paper, we propose an O(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+m)$$\end{document}-time algorithm for the weighted paired-domination problem on block graphs using dynamic programming, which strengthens the results in [Theoret Comput Sci 410(47–49):5063–5071, 2009] and [J Comb Optim 19(4):457–470, 2010]. Moreover, the algorithm can be completed in O(n) time if the block-cut-vertex structure of G is given.
引用
收藏
页码:269 / 286
页数:17
相关论文
共 50 条
  • [21] Efficient Algorithm for the Paired-Domination Problem in Convex Bipartite Graphs
    Hung, Ruo-Wei
    Laio, Chi-Hyi
    Wang, Chun-Kai
    INTERNATIONAL MULTICONFERENCE OF ENGINEERS AND COMPUTER SCIENTISTS (IMECS 2010), VOLS I-III, 2010, : 365 - 369
  • [22] Graphs with large paired-domination number
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 13 (01) : 61 - 78
  • [23] On the Distance Paired-Domination of Circulant Graphs
    Wang, Haoli
    Xu, Xirong
    Yang, Yuansheng
    Wang, Guoqing
    Lue, Kai
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2011, 34 (01) : 1 - 19
  • [24] A LINEAR-TIME ALGORITHM TO SOLVE THE WEIGHTED PERFECT DOMINATION PROBLEM IN SERIES-PARALLEL GRAPHS
    YEN, CC
    LEE, RCT
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1994, 73 (01) : 192 - 198
  • [25] Paired-domination of Cartesian products of graphs
    Bresar, Bostjan
    Henning, Michael A.
    Rall, Douglas F.
    UTILITAS MATHEMATICA, 2007, 73 : 255 - 265
  • [26] A linear-time algorithm for semitotal domination in strongly chordal graphs
    Tripathi, Vikash
    Pandey, Arti
    Maheshwari, Anil
    DISCRETE APPLIED MATHEMATICS, 2023, 338 : 77 - 88
  • [27] TOTAL DOMINATION VERSUS PAIRED-DOMINATION IN REGULAR GRAPHS
    Cyman, Joanna
    Dettlaff, Magda
    Henning, Michael A.
    Lemanska, Magdalena
    Raczek, Joanna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2018, 38 (02) : 573 - 586
  • [28] A Linear-Time Approximation Algorithm for Weighted Matchings in Graphs
    Vinkemeier, Doratha E. Drake
    Hougardy, Stefan
    ACM TRANSACTIONS ON ALGORITHMS, 2005, 1 (01) : 107 - 122
  • [29] The diameter of paired-domination vertex critical graphs
    Michael A. Henning
    Christina M. Mynhardt
    Czechoslovak Mathematical Journal, 2008, 58 : 887 - 897
  • [30] Upper Bounds for the Paired-Domination Numbers of Graphs
    Changhong Lu
    Chao Wang
    Kan Wang
    Graphs and Combinatorics, 2016, 32 : 1489 - 1494