A linear-time algorithm for weighted paired-domination on block graphs

被引:0
|
作者
Ching-Chi Lin
Cheng-Yu Hsieh
Ta-Yu Mu
机构
[1] National Taiwan Ocean University,Department of Computer Science and Engineering
[2] National Taiwan University,Department of Computer Science and Information Engineering
来源
关键词
Weighted paired-domination; Perfect matching; Block graph; Dynamic programming;
D O I
暂无
中图分类号
学科分类号
摘要
In a graph G=(V,E)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = (V,E)$$\end{document}, a set S⊆V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V(G)$$\end{document} is said to be a dominating set of G if every vertex not in S is adjacent to a vertex in S. Let G[S] denote the subgraph of G induced by a subset S of V(G). A dominating set S of G is called a paired-dominating set of G if the induced subgraph G[S] contains a perfect matching. Suppose that, for each v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v \in V(G)$$\end{document}, we have a weight w(v) specifying the cost for adding v to S. The weighted paired-domination problem is to find a paired-dominating set S whose total weights w(S)=∑v∈Sw(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$w(S) = \sum _{v \in S} {w(v)}$$\end{document} is minimized. In this paper, we propose an O(n+m)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n+m)$$\end{document}-time algorithm for the weighted paired-domination problem on block graphs using dynamic programming, which strengthens the results in [Theoret Comput Sci 410(47–49):5063–5071, 2009] and [J Comb Optim 19(4):457–470, 2010]. Moreover, the algorithm can be completed in O(n) time if the block-cut-vertex structure of G is given.
引用
收藏
页码:269 / 286
页数:17
相关论文
共 50 条
  • [31] Paired-Domination in Claw-Free Graphs
    Huang, Shenwei
    Kang, Liying
    Shan, Erfang
    GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1777 - 1794
  • [32] Complexity of distance paired-domination problem in graphs
    Chang, Gerard J.
    Panda, B. S.
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2012, 459 : 89 - 99
  • [33] Paired-Domination in Claw-Free Graphs
    Shenwei Huang
    Liying Kang
    Erfang Shan
    Graphs and Combinatorics, 2013, 29 : 1777 - 1794
  • [34] THE DIAMETER OF PAIRED-DOMINATION VERTEX CRITICAL GRAPHS
    Henning, Michael A.
    Mynhardt, Christina M.
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2008, 58 (04) : 887 - 897
  • [35] Algorithmic aspects of upper paired-domination in graphs
    Henning, Michael A.
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2020, 804 : 98 - 114
  • [36] Upper Bounds for the Paired-Domination Numbers of Graphs
    Lu, Changhong
    Wang, Chao
    Wang, Kan
    GRAPHS AND COMBINATORICS, 2016, 32 (04) : 1489 - 1494
  • [37] A linear-time algorithm for the center problem in weighted cycle graphs
    Eom, Taekang
    Ahn, Hee-Kap
    INFORMATION PROCESSING LETTERS, 2024, 186
  • [38] Distance paired-domination problems on subclasses of chordal graphs
    Chen, Lei
    Lu, Changhong
    Zeng, Zhenbing
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (47-49) : 5072 - 5081
  • [39] Upper paired-domination in claw-free graphs
    Dorbec, Paul
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2011, 22 (02) : 235 - 251
  • [40] Paired-Domination in Subdivided Star-Free Graphs
    Dorbec, Paul
    Gravier, Sylvain
    GRAPHS AND COMBINATORICS, 2010, 26 (01) : 43 - 49