Some Statistics on Generalized Motzkin Paths with Vertical Steps

被引:0
|
作者
Yidong Sun
Di Zhao
Weichen Wang
Wenle Shi
机构
[1] Dalian Maritime University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Dyck path; G-Motzkin path; Catalan number; Riordan array; 05A15; 05A05; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from (0, 0) to (n, 0) in the first quadrant of the XY-plane that consist of up steps u=(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}=(1, 1)$$\end{document}, down steps d=(1,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{d}}=(1, -1)$$\end{document}, horizontal steps h=(1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{h}}=(1, 0)$$\end{document} and vertical steps v=(0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{v}}=(0, -1)$$\end{document}. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, and to enumerate the statistics “number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps” at given level in G-Motzkin paths for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z1z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2$$\end{document}-steps” in G-Motzkin paths for z1,z2∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1, {\textbf{z}}_2\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, the exact counting formulas except for z1z2=dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2={\textbf{dd}}$$\end{document} are obtained by the Lagrange inversion formula and their generating functions.
引用
收藏
相关论文
共 50 条
  • [1] Some Statistics on Generalized Motzkin Paths with Vertical Steps
    Sun, Yidong
    Zhao, Di
    Wang, Weichen
    Shi, Wenle
    GRAPHS AND COMBINATORICS, 2022, 38 (06)
  • [2] The uvu-Avoiding (a, b, c)-Generalized Motzkin Paths with Vertical Steps: Bijections and Statistic Enumerations
    Sun, Yidong
    Wang, Weichen
    Sun, Cheng
    GRAPHS AND COMBINATORICS, 2023, 39 (05)
  • [3] Correction to: The uvu-Avoiding (a, b, c)-Generalized Motzkin Paths with Vertical Steps: Bijections and Statistic Enumerations
    Yidong Sun
    Weichen Wang
    Cheng Sun
    Graphs and Combinatorics, 2023, 39
  • [4] Combinatorics of generalized Dyck and Motzkin paths
    Gan, Li
    Ouvry, Stephane
    Polychronakos, Alexios P.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [5] Statistics on bargraphs viewed as cornerless Motzkin paths
    Deutsch, Emeric
    Elizalde, Sergi
    DISCRETE APPLIED MATHEMATICS, 2017, 221 : 54 - 66
  • [6] The uvu-Avoiding (a, b, c)-Generalized Motzkin Paths with Vertical Steps: Bijections and Statistic Enumerations (vol 39, 110, 2023)
    Sun, Yidong
    Wang, Weichen
    Sun, Cheng
    GRAPHS AND COMBINATORICS, 2023, 39 (06)
  • [7] THE PASCAL RHOMBUS AND THE GENERALIZED GRAND MOTZKIN PATHS
    Ramirez, Jose L.
    FIBONACCI QUARTERLY, 2016, 54 (02): : 99 - 104
  • [8] Counting humps and peaks in generalized Motzkin paths
    Mansour, Toufik
    Shattuck, Mark
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2213 - 2216
  • [9] A bijective approach to the area of generalized Motzkin paths
    Pergola, E
    Pinzani, R
    Rinaldi, S
    Sulanke, RA
    ADVANCES IN APPLIED MATHEMATICS, 2002, 28 (3-4) : 580 - 591
  • [10] Peakless Motzkin paths with marked level steps at fixed height
    Cameron, Naiomi
    Sullivan, Everett
    DISCRETE MATHEMATICS, 2021, 344 (01)