Some Statistics on Generalized Motzkin Paths with Vertical Steps

被引:0
|
作者
Yidong Sun
Di Zhao
Weichen Wang
Wenle Shi
机构
[1] Dalian Maritime University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Dyck path; G-Motzkin path; Catalan number; Riordan array; 05A15; 05A05; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from (0, 0) to (n, 0) in the first quadrant of the XY-plane that consist of up steps u=(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}=(1, 1)$$\end{document}, down steps d=(1,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{d}}=(1, -1)$$\end{document}, horizontal steps h=(1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{h}}=(1, 0)$$\end{document} and vertical steps v=(0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{v}}=(0, -1)$$\end{document}. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, and to enumerate the statistics “number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps” at given level in G-Motzkin paths for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z1z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2$$\end{document}-steps” in G-Motzkin paths for z1,z2∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1, {\textbf{z}}_2\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, the exact counting formulas except for z1z2=dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2={\textbf{dd}}$$\end{document} are obtained by the Lagrange inversion formula and their generating functions.
引用
收藏
相关论文
共 50 条
  • [31] Some statistics on Dyck paths
    Merlini, D
    Sprugnoli, R
    Verri, MC
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 101 (1-2) : 211 - 227
  • [32] Dyck Paths, Motzkin Paths, and the Binomial Transform
    Capparelli, Stefano
    Del Fra, Alberto
    JOURNAL OF INTEGER SEQUENCES, 2015, 18 (08)
  • [33] Counting humps in Motzkin paths
    Ding, Yun
    Du, Rosena R. X.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (1-2) : 187 - 191
  • [34] A Relation Between Schroder Paths and Motzkin Paths
    Yang, Lin
    Yang, Sheng-Liang
    GRAPHS AND COMBINATORICS, 2020, 36 (05) : 1489 - 1502
  • [35] Cyclic descents for Motzkin paths
    Han, Bin
    DISCRETE MATHEMATICS, 2023, 346 (08)
  • [36] Forces in Motzkin paths in a wedge
    van Rensburg, EJJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (07): : 1581 - 1608
  • [37] Crossings, Motzkin paths and moments
    Josuat-Verges, Matthieu
    Rubey, Martin
    DISCRETE MATHEMATICS, 2011, 311 (18-19) : 2064 - 2078
  • [38] Fluctuations of random Motzkin paths
    Bryc, Wlodzimierz
    Wang, Yizao
    ADVANCES IN APPLIED MATHEMATICS, 2019, 106 : 96 - 116
  • [39] Bijective recurrences for Motzkin paths
    Sulanke, RA
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 627 - 640
  • [40] Potential polynomials and Motzkin paths
    Sun, Yidong
    DISCRETE MATHEMATICS, 2009, 309 (09) : 2640 - 2648