Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from (0, 0) to (n, 0) in the first quadrant of the XY-plane that consist of up steps u=(1,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{u}}=(1, 1)$$\end{document}, down steps d=(1,-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{d}}=(1, -1)$$\end{document}, horizontal steps h=(1,0)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{h}}=(1, 0)$$\end{document} and vertical steps v=(0,-1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{v}}=(0, -1)$$\end{document}. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}$$\end{document}-steps for z∈{u,h,v,d}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, and to enumerate the statistics “number of z\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}$$\end{document}-steps” at given level in G-Motzkin paths for z∈{u,h,v,d}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z1z2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}_1{\textbf{z}}_2$$\end{document}-steps” in G-Motzkin paths for z1,z2∈{u,h,v,d}\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}_1, {\textbf{z}}_2\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, the exact counting formulas except for z1z2=dd\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\textbf{z}}_1{\textbf{z}}_2={\textbf{dd}}$$\end{document} are obtained by the Lagrange inversion formula and their generating functions.