Some Statistics on Generalized Motzkin Paths with Vertical Steps

被引:0
|
作者
Yidong Sun
Di Zhao
Weichen Wang
Wenle Shi
机构
[1] Dalian Maritime University,School of Science
来源
Graphs and Combinatorics | 2022年 / 38卷
关键词
Dyck path; G-Motzkin path; Catalan number; Riordan array; 05A15; 05A05; 05A19;
D O I
暂无
中图分类号
学科分类号
摘要
Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from (0, 0) to (n, 0) in the first quadrant of the XY-plane that consist of up steps u=(1,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{u}}=(1, 1)$$\end{document}, down steps d=(1,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{d}}=(1, -1)$$\end{document}, horizontal steps h=(1,0)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{h}}=(1, 0)$$\end{document} and vertical steps v=(0,-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{v}}=(0, -1)$$\end{document}. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, and to enumerate the statistics “number of z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}$$\end{document}-steps” at given level in G-Motzkin paths for z∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z1z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2$$\end{document}-steps” in G-Motzkin paths for z1,z2∈{u,h,v,d}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1, {\textbf{z}}_2\in \{{\textbf{u}}, {\textbf{h}}, {\textbf{v}}, {\textbf{d}}\}$$\end{document}, the exact counting formulas except for z1z2=dd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\textbf{z}}_1{\textbf{z}}_2={\textbf{dd}}$$\end{document} are obtained by the Lagrange inversion formula and their generating functions.
引用
收藏
相关论文
共 50 条
  • [41] A partial order on Motzkin paths
    Fang, Wenjie
    DISCRETE MATHEMATICS, 2020, 343 (05)
  • [42] Restricted involutions and Motzkin paths
    Barnabei, Marilena
    Bonetti, Flavio
    Silimbani, Matteo
    ADVANCES IN APPLIED MATHEMATICS, 2011, 47 (01) : 102 - 115
  • [43] PEAKS AND VALLEYS IN MOTZKIN PATHS
    Brennan, Charlotte
    Mavhungu, Simon
    QUAESTIONES MATHEMATICAE, 2010, 33 (02) : 171 - 188
  • [44] From (2, 3)-Motzkin Paths to Schroder Paths
    Yan, Sherry H. F.
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (09)
  • [45] Permutations weakly avoiding barred patterns and combinatorial bijections to generalized Dyck and Motzkin paths
    Phan Thuan Do
    Rossin, Dominique
    Thi Thu Huong Tran
    DISCRETE MATHEMATICS, 2014, 320 : 40 - 50
  • [46] A Relation Between Schröder Paths and Motzkin Paths
    Lin Yang
    Sheng-Liang Yang
    Graphs and Combinatorics, 2020, 36 : 1489 - 1502
  • [47] Restricted Motzkin permutations, Motzkin paths, continued fractions, and Chebyshev polynomials
    Elizalde, S
    Mansour, T
    DISCRETE MATHEMATICS, 2005, 305 (1-3) : 170 - 189
  • [48] Two Bijections on Weighted Motzkin Paths
    Chen Zhong-jin
    Zhao Shuo
    Communications in Mathematical Research, 2017, 33 (02) : 149 - 159
  • [49] Colored Motzkin Paths of Higher Order
    DeJager, Isaac
    Naquin, Madeleine
    Seidl, Frank
    Drube, Paul
    JOURNAL OF INTEGER SEQUENCES, 2021, 24 (04)
  • [50] Fluctuations of random Motzkin paths II
    Bryc, Wlodzimierz
    Wang, Yizao
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2024, 21 : 73 - 94