A bijective approach to the area of generalized Motzkin paths

被引:13
|
作者
Pergola, E [1 ]
Pinzani, R
Rinaldi, S
Sulanke, RA
机构
[1] Univ Florence, Dipartimento Sist & Imformat, I-50121 Florence, Italy
[2] Boise State Univ, Boise, ID 83725 USA
关键词
lattice paths; Motzkin paths; recurrences;
D O I
10.1006/aama.2001.0796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For fixed positive integer k, let E-n denote the set of lattice paths using the steps (1, 1). (1, -1), and (k, 0) and running from (0, 0) to (n, 0) while remaining strictly above the x-axis elsewhere. We first prove bijectively that the total area of the regions bounded by the paths of E-n and the x-axis satisfies a four-term recurrence depending only on k. We then give both a bijective and a generating function argument proving that the total area under the paths of E-n equals the total number of lattice points on the x-axis hit by the unrestricted paths running from (0, 0) to (n - 2, 0) and using the same step set as above. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:580 / 591
页数:12
相关论文
共 50 条
  • [1] Bijective recurrences for Motzkin paths
    Sulanke, RA
    ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 627 - 640
  • [2] Combinatorics of generalized Dyck and Motzkin paths
    Gan, Li
    Ouvry, Stephane
    Polychronakos, Alexios P.
    PHYSICAL REVIEW E, 2022, 106 (04)
  • [3] THE PASCAL RHOMBUS AND THE GENERALIZED GRAND MOTZKIN PATHS
    Ramirez, Jose L.
    FIBONACCI QUARTERLY, 2016, 54 (02): : 99 - 104
  • [4] Counting humps and peaks in generalized Motzkin paths
    Mansour, Toufik
    Shattuck, Mark
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (13-14) : 2213 - 2216
  • [5] Generalized Frobenius partitions, Motzkin paths, and Jacobi forms
    Jiang, Yuze
    Rolen, Larry
    Woodbury, Michael
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2022, 190
  • [6] Some Statistics on Generalized Motzkin Paths with Vertical Steps
    Yidong Sun
    Di Zhao
    Weichen Wang
    Wenle Shi
    Graphs and Combinatorics, 2022, 38
  • [7] Non uniform random generation of generalized Motzkin paths
    Brlek, S
    Pergola, E
    Roques, O
    ACTA INFORMATICA, 2006, 42 (8-9) : 603 - 616
  • [8] GENERALIZED FROBENIUS PARTITIONS, MOTZKIN PATHS, AND JACOBI FORMS
    Jiang, Yuze
    Rolen, Larry
    Woodbury, Michael
    arXiv, 2021,
  • [9] Combinatorial matrices derived from generalized Motzkin paths
    Lin Yang
    Sheng-Liang Yang
    Indian Journal of Pure and Applied Mathematics, 2021, 52 : 599 - 613
  • [10] Combinatorial matrices derived from generalized Motzkin paths
    Yang, Lin
    Yang, Sheng-Liang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2021, 52 (02): : 599 - 613