Expectile and M-quantile regression for panel data

被引:0
|
作者
Danilevicz, Ian Meneghel [1 ,2 ]
Reisen, Valderio Anselmo [1 ,2 ,3 ,4 ]
Bondon, Pascal [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, Brazil
[2] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gi Sur Yvette, France
[3] Univ Fed Espirito Santo, Grad Program Environm Engineer, Grad Program Econ, Vitoria, Brazil
[4] Univ Fed Bahia, Inst Math & Stat, Salvador, Brazil
关键词
Quantile regression; Expectile; M-estimation; Repeated measures; LASSO; PERFORMANCE; EXPORTS; MODELS;
D O I
10.1007/s11222-024-10396-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear fixed effect models are a general way to fit panel or longitudinal data with a distinct intercept for each unit. Based on expectile and M-quantile approaches, we propose alternative regression estimation methods to estimate the parameters of linear fixed effect models. The estimation functions are penalized by the least absolute shrinkage and selection operator to reduce the dimensionality of the data. Some asymptotic properties of the estimators are established, and finite sample size investigations are conducted to verify the empirical performances of the estimation methods. The computational implementations of the procedures are discussed, and real economic panel data from the Organisation for Economic Cooperation and Development are analyzed to show the usefulness of the methods in a practical problem.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Quantile-regression-based clustering for panel data
    Zhang, Yingying
    Wang, Huixia Judy
    Zhu, Zhongyi
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 54 - 67
  • [42] Semiparametric M-quantile regression with measurement error in spatial covariates: an application to housing price modelling
    Borgoni, Riccardo
    Spagnolo, Francesco Schirripa
    Michelangeli, Alessandra
    Salvati, Nicola
    Carcagni, Antonella
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2024, 73 (01) : 82 - 103
  • [43] Penalized high-dimensional M-quantile regression: From L1 to Lp optimization
    Hu, Jie
    Chen, Yu
    Zhang, Weiping
    Guo, Xiao
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (03): : 875 - 905
  • [44] Bayesian analysis of quantile regression for censored dynamic panel data
    Kobayashi, Genya
    Kozumi, Hideo
    COMPUTATIONAL STATISTICS, 2012, 27 (02) : 359 - 380
  • [45] Shrinkage quantile regression for panel data with multiple structural breaks
    Zhang, Liwen
    Zhu, Zhoufan
    Feng, Xingdong
    He, Yong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (03): : 820 - 851
  • [46] Quantile Regression and Homogeneity Identification of a Semiparametric Panel Data Model
    Li, Rui
    Li, Tao
    Su, Huacheng
    You, Jinhong
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025,
  • [47] A panel data quantile regression analysis of the impact of corruption on tourism
    Lv, Zhike
    Xu, Ting
    CURRENT ISSUES IN TOURISM, 2017, 20 (06) : 603 - 616
  • [48] Bayesian analysis of dynamic panel data by penalized quantile regression
    Aghamohammadi, Ali
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (01): : 91 - 108
  • [49] Penalized quantile regression for spatial panel data with fixed effects
    Zhang, Yuanqing
    Jiang, Jiayuan
    Feng, Yaqin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (04) : 1287 - 1299
  • [50] Nonparametric Quantile Regression for Homogeneity Pursuit in Panel Data Models
    Zhang, Xiaoyu
    Wang, Di
    Lian, Heng
    Li, Guodong
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (04) : 1238 - 1250