Expectile and M-quantile regression for panel data

被引:0
|
作者
Danilevicz, Ian Meneghel [1 ,2 ]
Reisen, Valderio Anselmo [1 ,2 ,3 ,4 ]
Bondon, Pascal [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, Brazil
[2] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gi Sur Yvette, France
[3] Univ Fed Espirito Santo, Grad Program Environm Engineer, Grad Program Econ, Vitoria, Brazil
[4] Univ Fed Bahia, Inst Math & Stat, Salvador, Brazil
关键词
Quantile regression; Expectile; M-estimation; Repeated measures; LASSO; PERFORMANCE; EXPORTS; MODELS;
D O I
10.1007/s11222-024-10396-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear fixed effect models are a general way to fit panel or longitudinal data with a distinct intercept for each unit. Based on expectile and M-quantile approaches, we propose alternative regression estimation methods to estimate the parameters of linear fixed effect models. The estimation functions are penalized by the least absolute shrinkage and selection operator to reduce the dimensionality of the data. Some asymptotic properties of the estimators are established, and finite sample size investigations are conducted to verify the empirical performances of the estimation methods. The computational implementations of the procedures are discussed, and real economic panel data from the Organisation for Economic Cooperation and Development are analyzed to show the usefulness of the methods in a practical problem.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] M-quantile models with application to poverty mapping
    Tzavidis, Nikos
    Salvati, Nicola
    Pratesi, Monica
    Chambers, Ray
    STATISTICAL METHODS AND APPLICATIONS, 2008, 17 (03): : 393 - 411
  • [32] M-quantile models for small area estimation
    Chambers, Ray
    Tzavidis, Nikos
    BIOMETRIKA, 2006, 93 (02) : 255 - 268
  • [33] M-quantile models with application to poverty mapping
    Nikos Tzavidis
    Nicola Salvati
    Monica Pratesi
    Ray Chambers
    Statistical Methods and Applications, 2008, 17 : 393 - 411
  • [34] Generalized linear mixed quantile regression with panel data
    Lu, Xiaoming
    Fan, Zhaozhi
    PLOS ONE, 2020, 15 (08):
  • [35] Mid-quantile regression for discrete panel data
    Russo, Alfonso
    Farcomeni, Alessio
    Geraci, Marco
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (12) : 2754 - 2771
  • [36] Robust penalized quantile regression estimation for panel data
    Lamarche, Carlos
    JOURNAL OF ECONOMETRICS, 2010, 157 (02) : 396 - 408
  • [37] Panel data quantile regression with grouped fixed effects
    Gu, Jiaying
    Volgushev, Stanislav
    JOURNAL OF ECONOMETRICS, 2019, 213 (01) : 68 - 91
  • [38] Reconsideration of a simple approach to quantile regression for panel data
    Besstremyannaya, Galina
    Golovan, Sergei
    ECONOMETRICS JOURNAL, 2019, 22 (03): : 292 - +
  • [39] Quantile regression for dynamic panel data with fixed effects
    Galvao, Antonio F., Jr.
    JOURNAL OF ECONOMETRICS, 2011, 164 (01) : 142 - 157
  • [40] Panel Data Quantile Regression for Treatment Effect Models
    Ishihara, Takuya
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (03) : 720 - 736