Expectile and M-quantile regression for panel data

被引:0
|
作者
Danilevicz, Ian Meneghel [1 ,2 ]
Reisen, Valderio Anselmo [1 ,2 ,3 ,4 ]
Bondon, Pascal [2 ]
机构
[1] Univ Fed Minas Gerais, Dept Stat, Belo Horizonte, Brazil
[2] Univ Paris Saclay, CNRS, CentraleSupelec, Lab Signaux & Syst, F-91190 Gi Sur Yvette, France
[3] Univ Fed Espirito Santo, Grad Program Environm Engineer, Grad Program Econ, Vitoria, Brazil
[4] Univ Fed Bahia, Inst Math & Stat, Salvador, Brazil
关键词
Quantile regression; Expectile; M-estimation; Repeated measures; LASSO; PERFORMANCE; EXPORTS; MODELS;
D O I
10.1007/s11222-024-10396-7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Linear fixed effect models are a general way to fit panel or longitudinal data with a distinct intercept for each unit. Based on expectile and M-quantile approaches, we propose alternative regression estimation methods to estimate the parameters of linear fixed effect models. The estimation functions are penalized by the least absolute shrinkage and selection operator to reduce the dimensionality of the data. Some asymptotic properties of the estimators are established, and finite sample size investigations are conducted to verify the empirical performances of the estimation methods. The computational implementations of the procedures are discussed, and real economic panel data from the Organisation for Economic Cooperation and Development are analyzed to show the usefulness of the methods in a practical problem.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Adaptive semiparametric M-quantile regression ( vol 11, pg 116, 2019)
    Otto-Sobotka, Fabian
    ECONOMETRICS AND STATISTICS, 2025, 33
  • [22] M-Quantile Estimation for GARCH Models
    Patrocinio, Patrick F. F.
    Reisen, Valderio A. A.
    Bondon, Pascal
    Monte, Edson Z. Z.
    Danilevicz, Ian M. M.
    COMPUTATIONAL ECONOMICS, 2024, 63 (06) : 2175 - 2192
  • [23] Performance evaluation of nursing homes using finite mixtures of logistic models and M-quantile regression for binary data
    De Novellis, G.
    Doretti, M.
    Montanari, G. E.
    Ranalli, M. G.
    Salvati, N.
    STATISTICAL METHODS AND APPLICATIONS, 2024, 33 (03): : 753 - 781
  • [24] Parametric modelling of M-quantile regression coefficient functions with application to small area estimation
    Frumento, Paolo
    Salvati, Nicola
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2020, 183 (01) : 229 - 250
  • [25] Analysing radon accumulation in the home by flexible M-quantile mixed effect regression
    Borgoni, R.
    Carcagni, A.
    Salvati, N.
    Schmid, T.
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2019, 33 (02) : 375 - 394
  • [26] Penalized quantile regression for dynamic panel data
    Galvao, Antonio F.
    Montes-Rojas, Gabriel V.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (11) : 3476 - 3497
  • [27] Bootstrap Inference for Panel Data Quantile Regression
    Galvao, Antonio F.
    Parker, Thomas
    Xiao, Zhijie
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2024, 42 (02) : 628 - 639
  • [28] Approximate Bayesian Quantile Regression for Panel Data
    Pulcini, Antonio
    Liseo, Brunero
    ADVANCES IN COMPLEX DATA MODELING AND COMPUTATIONAL METHODS IN STATISTICS, 2015, : 173 - 189
  • [29] A simple approach to quantile regression for panel data
    Canay, Ivan A.
    ECONOMETRICS JOURNAL, 2011, 14 (03): : 368 - 386
  • [30] Parametric modelling of M-quantile regression coefficient functions with application to small area estimation
    Frumento, Paolo
    Salvati, Nicola
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2019, : 229 - 250