New inequalities for hyperbolic functions based on reparameterization

被引:0
|
作者
Wangkang Huang
Xiao-Diao Chen
Linqiang Chen
Xiaoyang Mao
机构
[1] Hangzhou Dianzi University,School of Computer Science
[2] University of Yamanashi,Department of Computer Science and Engineering
[3] Hangzhou Dianzi University,School of Cyberspace
关键词
Inequalities; Inverse tangent function; Inverse hyperbolic sine function; Inverse hyperbolic tangent function; Sine function; 26D05; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present new inequalities about hyperbolic functions with much better approximation effect. It firstly provides two-sided bounds of (sinh(x)/x)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sinh (x)/x)^p$$\end{document} for the case p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (0,1]$$\end{document}, and lower bound for the case p≥75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge \frac{7}{5}$$\end{document} as well. It also provides inequalities about mixed hyperbolic functions consisting of tanh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tanh (x)$$\end{document} and sinh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh (x)$$\end{document}. Numerical examples show that the new inequalities can achieve much better approximation effect than those of prevailing methods.
引用
收藏
相关论文
共 50 条
  • [41] Inequalities for the generalized trigonometric and hyperbolic functions with two parameters
    Yin, Li
    Huang, Li-Guo
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (04): : 315 - 323
  • [42] INEQUALITIES FOR GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS WITH ONE PARAMETER
    Wang, Miao-Kun
    Hong, Miao-Ying
    Xu, Yang-Fan
    Shen, Zhong-Hua
    Chu, Yu-Ming
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (01): : 1 - 21
  • [43] Wilker-type inequalities for hyperbolic Fibonacci functions
    Mustafa Bahşi
    Journal of Inequalities and Applications, 2016
  • [44] INEQUALITIES FOR THE GENERALIZED TRIGONOMETRIC, HYPERBOLIC AND JACOBIAN ELLIPTIC FUNCTIONS
    Neuman, Edward
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2015, 9 (03): : 709 - 726
  • [45] Functional inequalities for generalized inverse trigonometric and hyperbolic functions
    Baricz, Arpad
    Bhayo, Barkat Ali
    Pogany, Tibor K.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 417 (01) : 244 - 259
  • [46] Wilker-type inequalities for hyperbolic Fibonacci functions
    Bahsi, Mustafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,
  • [47] On a new class of hyperbolic functions
    Stakhov, A
    Rozin, B
    CHAOS SOLITONS & FRACTALS, 2005, 23 (02) : 379 - 389
  • [48] Certain Inequalities Involving Generalized Hyperbolic Sine and Cosine Functions
    Ghodechor, Sanjay
    Darkunde, Nitin
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2024, 15 (02): : 503 - 510
  • [49] INEQUALITIES INVOLVING INVERSE CIRCULAR AND INVERSE HYPERBOLIC FUNCTIONS II
    Neuman, Edward
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2010, 4 (01): : 11 - 14
  • [50] Inequalities related to certain inverse trigonometric and inverse hyperbolic functions
    Chao-Ping Chen
    Branko Malešević
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114