New inequalities for hyperbolic functions based on reparameterization

被引:0
|
作者
Wangkang Huang
Xiao-Diao Chen
Linqiang Chen
Xiaoyang Mao
机构
[1] Hangzhou Dianzi University,School of Computer Science
[2] University of Yamanashi,Department of Computer Science and Engineering
[3] Hangzhou Dianzi University,School of Cyberspace
关键词
Inequalities; Inverse tangent function; Inverse hyperbolic sine function; Inverse hyperbolic tangent function; Sine function; 26D05; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present new inequalities about hyperbolic functions with much better approximation effect. It firstly provides two-sided bounds of (sinh(x)/x)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sinh (x)/x)^p$$\end{document} for the case p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (0,1]$$\end{document}, and lower bound for the case p≥75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge \frac{7}{5}$$\end{document} as well. It also provides inequalities about mixed hyperbolic functions consisting of tanh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tanh (x)$$\end{document} and sinh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh (x)$$\end{document}. Numerical examples show that the new inequalities can achieve much better approximation effect than those of prevailing methods.
引用
收藏
相关论文
共 50 条
  • [31] INEQUALITIES INVOLVING GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
    Neuman, Edward
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (04): : 725 - 736
  • [32] Wilker-type inequalities for hyperbolic functions
    Wu, Shanhe
    Debnath, Lokenath
    APPLIED MATHEMATICS LETTERS, 2012, 25 (05) : 837 - 842
  • [33] A note on Jordan type inequalities for hyperbolic functions
    Lv, Yupei
    Wang, Gendi
    Chu, Yuming
    APPLIED MATHEMATICS LETTERS, 2012, 25 (03) : 505 - 508
  • [34] Jordan Type Inequalities for Hyperbolic Functions and Their Applications
    Yang, Zhen-Hang
    Chu, Yu-Ming
    JOURNAL OF FUNCTION SPACES, 2015, 2015
  • [35] INEQUALITIES INVOLVING CIRCULAR, HYPERBOLIC AND EXPONENTIAL FUNCTIONS
    Bagul, Yogesh J.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2017, 11 (03): : 695 - 699
  • [36] Integral inequalities for hyperbolic type preinvex functions
    Elahi, Sarah
    Noor, Muhammad Aslam
    AIMS MATHEMATICS, 2021, 6 (09): : 10313 - 10326
  • [37] New Masjed Jamei-Type Inequalities for Inverse Trigonometric and Inverse Hyperbolic Functions
    Zhu, Ling
    MATHEMATICS, 2022, 10 (16)
  • [38] ON SOME NEW INEQUALITIES OF HERMITE HADAMARD TYPES FOR HYPERBOLIC p-CONVEX FUNCTIONS
    Faried, Nashat
    Ali, Mohamed S. S.
    Yehia, Zeinab M.
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2019, 68 (02): : 1841 - 1850
  • [39] Inequalities for a new hyperbolic type metric
    Oona Rainio
    Complex Analysis and its Synergies, 2025, 11 (2)
  • [40] GENERALIZATION OF HEINZ OPERATOR INEQUALITIES VIA HYPERBOLIC FUNCTIONS
    Shi, Guanghua
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (03): : 715 - 724