New inequalities for hyperbolic functions based on reparameterization

被引:0
|
作者
Wangkang Huang
Xiao-Diao Chen
Linqiang Chen
Xiaoyang Mao
机构
[1] Hangzhou Dianzi University,School of Computer Science
[2] University of Yamanashi,Department of Computer Science and Engineering
[3] Hangzhou Dianzi University,School of Cyberspace
关键词
Inequalities; Inverse tangent function; Inverse hyperbolic sine function; Inverse hyperbolic tangent function; Sine function; 26D05; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present new inequalities about hyperbolic functions with much better approximation effect. It firstly provides two-sided bounds of (sinh(x)/x)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sinh (x)/x)^p$$\end{document} for the case p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (0,1]$$\end{document}, and lower bound for the case p≥75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge \frac{7}{5}$$\end{document} as well. It also provides inequalities about mixed hyperbolic functions consisting of tanh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tanh (x)$$\end{document} and sinh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh (x)$$\end{document}. Numerical examples show that the new inequalities can achieve much better approximation effect than those of prevailing methods.
引用
收藏
相关论文
共 50 条
  • [21] New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions
    Chen, Xiao-Diao
    Nie, Long
    Huang, Wangkang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
  • [22] Six new Redheffer-type inequalities for circular and hyperbolic functions
    Zhu, Ling
    Sun, Jinju
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (02) : 522 - 529
  • [23] New inequalities between the inverse hyperbolic tangent and the analogue for corresponding functions
    Xiao-Diao Chen
    Long Nie
    Wangkang Huang
    Journal of Inequalities and Applications, 2020
  • [24] Tighter bounds for the inequalities of Sinc function based on reparameterization
    Qian, Cheng
    Chen, Xiao-Diao
    Malesevic, Branko
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [25] Tighter bounds for the inequalities of Sinc function based on reparameterization
    Cheng Qian
    Xiao-Diao Chen
    Branko Malesevic
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [26] Some New Wilker-Type Inequalities for Circular and Hyperbolic Functions
    Zhu, Ling
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [27] NEW TRIGONOMETRIC AND HYPERBOLIC INEQUALITIES
    Bhayo, Barkat Ali
    Klen, Riku
    Sandor, Jozsef
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 125 - 137
  • [28] Coefficient Inequalities of Functions Associated with Hyperbolic Domains
    Malik, Sarfraz Nawaz
    Mahmood, Shahid
    Raza, Mohsan
    Farman, Sumbal
    Zainab, Saira
    Muhammad, Nazeer
    MATHEMATICS, 2019, 7 (01):
  • [29] TWO SHARP INEQUALITIES FOR TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS
    Sandor, Jozsef
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (02): : 409 - 413
  • [30] Some inequalities for the generalized trigonometric and hyperbolic functions
    Sun, Bao-ju
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND ELECTRONIC TECHNOLOGY, 2016, 48 : 251 - 254