New inequalities for hyperbolic functions based on reparameterization

被引:0
|
作者
Wangkang Huang
Xiao-Diao Chen
Linqiang Chen
Xiaoyang Mao
机构
[1] Hangzhou Dianzi University,School of Computer Science
[2] University of Yamanashi,Department of Computer Science and Engineering
[3] Hangzhou Dianzi University,School of Cyberspace
关键词
Inequalities; Inverse tangent function; Inverse hyperbolic sine function; Inverse hyperbolic tangent function; Sine function; 26D05; 26D07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we present new inequalities about hyperbolic functions with much better approximation effect. It firstly provides two-sided bounds of (sinh(x)/x)p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sinh (x)/x)^p$$\end{document} for the case p∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (0,1]$$\end{document}, and lower bound for the case p≥75\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \ge \frac{7}{5}$$\end{document} as well. It also provides inequalities about mixed hyperbolic functions consisting of tanh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tanh (x)$$\end{document} and sinh(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sinh (x)$$\end{document}. Numerical examples show that the new inequalities can achieve much better approximation effect than those of prevailing methods.
引用
收藏
相关论文
共 50 条
  • [1] New inequalities for hyperbolic functions based on reparameterization
    Huang, Wangkang
    Chen, Xiao-Diao
    Chen, Linqiang
    Mao, Xiaoyang
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [2] New inequalities for hyperbolic functions and their applications
    Ling Zhu
    Journal of Inequalities and Applications, 2012
  • [3] New inequalities for hyperbolic functions and their applications
    Zhu, Ling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [4] NEW INEQUALITIES FOR QUOTIENTS OF CIRCULAR AND HYPERBOLIC FUNCTIONS
    Bagul, Yogesh J.
    Dhaigude, Ramkrishna M.
    Thool, Sumedh B.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 16 (04): : 1243 - 1258
  • [5] Inequalities for hyperbolic functions
    Neuman, Edward
    Sandor, Jozsef
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (18) : 9291 - 9295
  • [6] New inequalities of Wilker's type for hyperbolic functions
    Zhu, Ling
    AIMS MATHEMATICS, 2020, 5 (01): : 376 - 384
  • [7] Sharp inequalities for hyperbolic functions
    Zhu, Ling
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (01) : 416 - 420
  • [8] Inequalities for Hyperbolic Functions and Their Applications
    L Zhu
    Journal of Inequalities and Applications, 2010
  • [9] Inequalities for Hyperbolic Functions and Their Applications
    Zhu, L.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [10] Sharp inequalities for hyperbolic functions and circular functions
    Zhu, Ling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)