On the Geophysical Green-Naghdi System

被引:0
|
作者
Lili Fan
Hongjun Gao
Haochen Li
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Southeast University,School of Mathematics
[3] Beijing University of Posts and Telecommunications,School of Science
来源
关键词
Geophysical Green-Naghdi equations; Local well-posedness; Traveling wave solutions; 35Q53; 35B30; 35C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a modified Green-Naghdi system with the effect of the Coriolis force is derived, which is a model in the equatorial oceanography to describe the propagation of large amplitude surface waves. The effects of the Coriolis force caused by the Earth’s rotation and nonlinearities on local well-posedness and traveling wave solutions are then investigated. Employing Kato’s theory, the local well-posedness in Sobolev space Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document} with s>52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\frac{5}{2}$$\end{document} is established. Based on the qualitative method combined with the bifurcation method of dynamical systems, the classification of all traveling wave solutions, all possible phase portraits of bifurcations and exact traveling wave solutions to this system are obtained under various conditions about the parameters depending on the value of the rotation Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}
引用
收藏
相关论文
共 50 条
  • [41] The eigenvalue problem for solitary waves of the Green-Naghdi equations
    Li, YA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 339 - 343
  • [42] Linear stability of solitary waves of the Green-Naghdi equations
    Li, YA
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2001, 54 (05) : 501 - 536
  • [43] ON THE TWO-TEMPERATURE GREEN-NAGHDI THERMOELASTICITY THEORIES
    El-Karamany, Ahmed S.
    Ezzat, Magdy A.
    JOURNAL OF THERMAL STRESSES, 2011, 34 (12) : 1207 - 1226
  • [44] ON THE GREEN-NAGHDI TYPE III HEAT CONDUCTION MODEL
    Giorgi, Claudio
    Grandi, Diego
    Pata, Vittorino
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (07): : 2133 - 2143
  • [45] Full Justification for the Extended Green-Naghdi System for an Uneven Bottom with/without Surface Tension
    Khorbatly, Bashar
    Israwi, Samer
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2023, 59 (03) : 587 - 631
  • [46] Numerical Approximation of Elasticity Tensor Associated With Green-Naghdi Rate
    Liu, Haofei
    Sun, Wei
    JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2017, 139 (08):
  • [47] Green-Naghdi dynamics of surface wind waves in finite depth
    Manna, M. A.
    Latifi, A.
    Kraenkel, R. A.
    FLUID DYNAMICS RESEARCH, 2018, 50 (02)
  • [48] On the regularity of the Green-Naghdi equations for a rotating shallow fluid layer
    Dritschel, David G.
    Jalali, Mohammad Reza
    JOURNAL OF FLUID MECHANICS, 2019, 865 : 100 - 136
  • [49] Nonlinear Wave Loads on a Submerged Deck by the Green-Naghdi Equations
    Hayatdavoodi, Masoud
    Ertekin, R. Cengiz
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2015, 137 (01):
  • [50] BRAGG SCATTERING OF WATER-WAVES BY GREEN-NAGHDI THEORY
    WEBSTER, WC
    WEHAUSEN, JV
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1995, 46 : S566 - S583