On the Geophysical Green-Naghdi System

被引:0
|
作者
Lili Fan
Hongjun Gao
Haochen Li
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Southeast University,School of Mathematics
[3] Beijing University of Posts and Telecommunications,School of Science
来源
关键词
Geophysical Green-Naghdi equations; Local well-posedness; Traveling wave solutions; 35Q53; 35B30; 35C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a modified Green-Naghdi system with the effect of the Coriolis force is derived, which is a model in the equatorial oceanography to describe the propagation of large amplitude surface waves. The effects of the Coriolis force caused by the Earth’s rotation and nonlinearities on local well-posedness and traveling wave solutions are then investigated. Employing Kato’s theory, the local well-posedness in Sobolev space Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document} with s>52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\frac{5}{2}$$\end{document} is established. Based on the qualitative method combined with the bifurcation method of dynamical systems, the classification of all traveling wave solutions, all possible phase portraits of bifurcations and exact traveling wave solutions to this system are obtained under various conditions about the parameters depending on the value of the rotation Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}
引用
收藏
相关论文
共 50 条
  • [31] Invariant and partially invariant solutions of the Green-Naghdi equations
    Bagderina Yu.Yu.
    Chupakhin A.P.
    Journal of Applied Mechanics and Technical Physics, 2005, 46 (6) : 791 - 799
  • [32] A Revised Exposition of the Green-Naghdi Theory of Heat Propagation
    Bargmann, Swantje
    Favata, Antonino
    Podio-Guidugli, Paolo
    JOURNAL OF ELASTICITY, 2014, 114 (02) : 143 - 154
  • [33] Thermoelasticity solution of a layer using the Green-Naghdi model
    Taheri, H
    Fariborz, S
    Eslami, MR
    JOURNAL OF THERMAL STRESSES, 2004, 27 (09) : 795 - 809
  • [34] Advanced Level Green-Naghdi Theory for Wave Transformation
    Zhao Binbin
    Duan Wenyang
    CHINESE-GERMAN JOINT SYMPOSIUM ON HYDRAULIC AND OCEAN ENGINEERING (CG JOINT 2010), 2010, : 325 - 330
  • [35] Wave Propagation in a Green-Naghdi Thermoelastic Solid with Diffusion
    Singh, Baljeet
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2013, 34 (03) : 553 - 566
  • [36] On the phase- lag Green-Naghdi thermoelasticity theories
    El-Karamany, Ahmed S.
    Ezzat, Magdy A.
    APPLIED MATHEMATICAL MODELLING, 2016, 40 (9-10) : 5643 - 5659
  • [37] Short waves in the Green-Naghdi system and others fluid dynamics model equations
    Manna, MA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 344 - 349
  • [38] Thermoelastic analysis of an annulus using the Green-Naghdi model
    Taheri, H
    Fariborz, SJ
    Eslami, MR
    JOURNAL OF THERMAL STRESSES, 2005, 28 (09) : 911 - 927
  • [39] Diffraction and Refraction of Nonlinear Waves by the Green-Naghdi Equations
    Hayatdavoodi, Masoud
    Ertekin, R. Cengiz
    JOURNAL OF OFFSHORE MECHANICS AND ARCTIC ENGINEERING-TRANSACTIONS OF THE ASME, 2023, 145 (02):
  • [40] Long-wavelength limit for the Green-Naghdi equations
    Li, Min
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (07): : 2700 - 2718