On the Geophysical Green-Naghdi System

被引:0
|
作者
Lili Fan
Hongjun Gao
Haochen Li
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Southeast University,School of Mathematics
[3] Beijing University of Posts and Telecommunications,School of Science
来源
关键词
Geophysical Green-Naghdi equations; Local well-posedness; Traveling wave solutions; 35Q53; 35B30; 35C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a modified Green-Naghdi system with the effect of the Coriolis force is derived, which is a model in the equatorial oceanography to describe the propagation of large amplitude surface waves. The effects of the Coriolis force caused by the Earth’s rotation and nonlinearities on local well-posedness and traveling wave solutions are then investigated. Employing Kato’s theory, the local well-posedness in Sobolev space Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document} with s>52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\frac{5}{2}$$\end{document} is established. Based on the qualitative method combined with the bifurcation method of dynamical systems, the classification of all traveling wave solutions, all possible phase portraits of bifurcations and exact traveling wave solutions to this system are obtained under various conditions about the parameters depending on the value of the rotation Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}
引用
收藏
相关论文
共 50 条
  • [21] On vibrations in Green-Naghdi thermoelasticity of dipolar bodies
    Marin, M.
    Chirila, A.
    Codarcea, L.
    Vlase, S.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (01): : 125 - 140
  • [22] Green-Naghdi type III viscous fluids
    Quintanilla, R.
    Straughan, B.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2012, 55 (04) : 710 - 714
  • [23] Remarks on the Green-Naghdi theory of heat conduction
    Bargmann, Swantje
    JOURNAL OF NON-EQUILIBRIUM THERMODYNAMICS, 2013, 38 (02) : 101 - 118
  • [24] DISCRETE TRANSPARENT BOUNDARY CONDITIONS FOR THE LINEARIZED GREEN-NAGHDI SYSTEM OF EQUATIONS
    Kazakova, Maria
    Noble, Pascal
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 657 - 683
  • [25] An Explicit Solution with Correctors for the Green-Naghdi Equations
    Israwi, Samer
    Mourad, Ayman
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 519 - 532
  • [26] Classification of traveling wave solutions to the Green-Naghdi model
    Jiang, Bo
    Bi, Qinsheng
    WAVE MOTION, 2017, 73 : 45 - 56
  • [27] A fast stable accurate artificial boundary condition for the linearized Green-Naghdi system
    Pang, Gang
    Ji, Songsong
    NUMERICAL ALGORITHMS, 2022, 90 (04) : 1437 - 1463
  • [28] A theory of thermoelasticity with diffusion under Green-Naghdi models
    Aouadi, Moncef
    Lazzari, Barbara
    Nibbi, Roberta
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (10): : 837 - 852
  • [29] The Long-Wave Approximation for the Green-Naghdi System with the Weak Coriolis Effect
    Liu, Yue
    Yang, Xiongfeng
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (04)
  • [30] A fast stable accurate artificial boundary condition for the linearized Green-Naghdi system
    Gang Pang
    Songsong Ji
    Numerical Algorithms, 2022, 90 : 1437 - 1463