On the Geophysical Green-Naghdi System

被引:0
|
作者
Lili Fan
Hongjun Gao
Haochen Li
机构
[1] Henan Normal University,College of Mathematics and Information Science
[2] Southeast University,School of Mathematics
[3] Beijing University of Posts and Telecommunications,School of Science
来源
关键词
Geophysical Green-Naghdi equations; Local well-posedness; Traveling wave solutions; 35Q53; 35B30; 35C07;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a modified Green-Naghdi system with the effect of the Coriolis force is derived, which is a model in the equatorial oceanography to describe the propagation of large amplitude surface waves. The effects of the Coriolis force caused by the Earth’s rotation and nonlinearities on local well-posedness and traveling wave solutions are then investigated. Employing Kato’s theory, the local well-posedness in Sobolev space Hs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^s$$\end{document} with s>52\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s>\frac{5}{2}$$\end{document} is established. Based on the qualitative method combined with the bifurcation method of dynamical systems, the classification of all traveling wave solutions, all possible phase portraits of bifurcations and exact traveling wave solutions to this system are obtained under various conditions about the parameters depending on the value of the rotation Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}
引用
收藏
相关论文
共 50 条
  • [1] On the Geophysical Green-Naghdi System
    Fan, Lili
    Gao, Hongjun
    Li, Haochen
    JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (02)
  • [2] Effects of the Coriolis effect on solitary waves of the geophysical Green-Naghdi system
    Guo, Mengze
    Yang, Shaojie
    APPLIED MATHEMATICS LETTERS, 2025, 164
  • [3] Green-Naghdi Theory,Part A:Green-Naghdi(GN) Equations for Shallow Water Waves
    William C. Webster
    JournalofMarineScienceandApplication, 2011, 10 (03) : 253 - 258
  • [4] TRAVELING WAVE SOLUTIONS OF THE GREEN-NAGHDI SYSTEM
    Deng, Shengfu
    Guo, Boling
    Wang, Tingchun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (05):
  • [5] Green-Naghdi Theory, Part B: Green-Naghdi Equations for Deep Water Waves
    Shiliang Duan
    Binbin Zhao
    W. C. Webster
    Journal of Marine Science and Application, 2023, 22 : 44 - 51
  • [6] Green-Naghdi theory, part A: Green-Naghdi (GN) equations for shallow water waves
    Webster W.C.
    Duan W.
    Zhao B.
    Journal of Marine Science and Application, 2011, 10 (3) : 253 - 258
  • [7] Green-Naghdi Theory, Part B: Green-Naghdi Equations for Deep Water Waves
    Duan, Shiliang
    Zhao, Binbin
    Webster, W. C.
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2023, 22 (01) : 44 - 51
  • [8] SOME TRAVELING WAVE SOLITONS OF THE GREEN-NAGHDI SYSTEM
    Deng, Shengfu
    Guo, Boling
    Wang, Tingchun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2011, 21 (02): : 575 - 585
  • [9] A numerical scheme for the Green-Naghdi model
    Le Metayer, O.
    Gavrilyuk, S.
    Hank, S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (06) : 2034 - 2045
  • [10] Tsunami simulation with Green-Naghdi theory
    Zhao, B. B.
    Duan, W. Y.
    Webster, W. C.
    OCEAN ENGINEERING, 2011, 38 (2-3) : 389 - 396