Toeplitz Kernels and Finite-Rank Commutators of Truncated Toeplitz Operators

被引:0
|
作者
Xiaoyuan Yang
Yufeng Lu
机构
[1] Jiangsu Ocean University,School of Science
[2] Dalian University of Technology,School of Mathematical Sciences
关键词
Model spaces; Truncated Toeplitz operators; Commutators; Finite Blaschke products; Finite-rank; 47B35; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using some properties about Toeplitz kernels, we present some results about finite-rank properties of the commutator [Af,Ag]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_f,~A_g]$$\end{document}. Firstly, we show that [ABn,Av∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_v^*]$$\end{document} must have a finite rank on the model space Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document}, where Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document} is a finite Blaschke product and v is an inner function. Next, we present that when kerTu¯Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {ker}~T_{\overline{u}B_n}$$\end{document} is an invariant subspace of Tϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\phi ^*$$\end{document}, then [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} has a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} for ϕ∈H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in H^\infty $$\end{document}. Finally, we prove that [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} must have a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} when u=Bnu1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=B_nu_1$$\end{document} for an inner function u1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1$$\end{document}.
引用
收藏
页码:2175 / 2193
页数:18
相关论文
共 50 条
  • [41] Finite Rank Bergman-Toeplitz and Bargmann-Toeplitz Operators in Many Dimensions
    Rozenblum, Grigori
    Shirokov, Nikolai
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2010, 4 (04) : 767 - 775
  • [42] Normal Truncated Toeplitz Operators
    Chu, Cheng
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (04) : 849 - 857
  • [43] On the Dilation of Truncated Toeplitz Operators
    Ko, Eungil
    Lee, Ji Eun
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2016, 10 (04) : 815 - 833
  • [44] KERNELS OF TOEPLITZ-OPERATORS
    NAKAZI, T
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1986, 38 (04) : 607 - 616
  • [45] Compact truncated Toeplitz operators
    Ma, Pan
    Zheng, Dechao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (11) : 4256 - 4279
  • [46] On the Dilation of Truncated Toeplitz Operators
    Eungil Ko
    Ji Eun Lee
    Complex Analysis and Operator Theory, 2016, 10 : 815 - 833
  • [47] ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS
    Sedlock, N. A.
    OPERATORS AND MATRICES, 2011, 5 (02): : 309 - 326
  • [48] Symbols of truncated Toeplitz operators
    Baranov, Anton
    Bessonov, Roman
    Kapustin, Vladimir
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3437 - 3456
  • [49] The Reducibility of Truncated Toeplitz Operators
    Yufei Li
    Yixin Yang
    Yufeng Lu
    Complex Analysis and Operator Theory, 2020, 14
  • [50] Normal Truncated Toeplitz Operators
    Cheng Chu
    Complex Analysis and Operator Theory, 2018, 12 : 849 - 857