The Reducibility of Truncated Toeplitz Operators

被引:0
|
作者
Yufei Li
Yixin Yang
Yufeng Lu
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] Dalian University of Technology,Department of Mathematics Sciences
来源
关键词
Reducibility; Truncated Toeplitz operator; Model space; Primary 47B35; 47A15; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a contraction on the Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {H}$$\end{document} and S a minimal isometric dilation of T. In this paper, we show that every projection in {T}′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T\}'$$\end{document} can be extended to a projection in {S}′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S\}'$$\end{document}. Using this result, a sufficient condition for reducibility of ABnθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\theta }_{B_{n}}$$\end{document}, where Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document} is a finite Blaschke product with order n, is given. In particular, we determine when ABnθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\theta }_{B_{n}}$$\end{document} is reducible in two special cases. One case is that n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document} and the other case is that Bn=zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}=z^{n}$$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}) and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is a singular inner function.
引用
收藏
相关论文
共 50 条
  • [1] The Reducibility of Truncated Toeplitz Operators
    Li, Yufei
    Yang, Yixin
    Lu, Yufeng
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2020, 14 (06)
  • [2] Reducibility and unitary equivalence for a class of truncated Toeplitz operators on model spaces
    Li, Yufei
    Yang, Yixin
    Lu, Yufeng
    NEW YORK JOURNAL OF MATHEMATICS, 2018, 24 : 929 - 946
  • [3] Products of truncated Hankel operators and truncated Toeplitz operators
    Zhao, Xi
    Yu, Tao
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (06) : 940 - 962
  • [4] ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS AND TOEPLITZ OPERATORS WITH MATRIX SYMBOL
    Cristina Camara, M.
    Partington, Jonathan R.
    JOURNAL OF OPERATOR THEORY, 2017, 77 (02) : 455 - 479
  • [5] Rank of Truncated Toeplitz Operators
    Caixing Gu
    Dong-O Kang
    Complex Analysis and Operator Theory, 2017, 11 : 825 - 842
  • [6] On the Dilation of Truncated Toeplitz Operators
    Eungil Ko
    Ji Eun Lee
    Complex Analysis and Operator Theory, 2016, 10 : 815 - 833
  • [7] ALGEBRAS OF TRUNCATED TOEPLITZ OPERATORS
    Sedlock, N. A.
    OPERATORS AND MATRICES, 2011, 5 (02): : 309 - 326
  • [8] Symbols of truncated Toeplitz operators
    Baranov, Anton
    Bessonov, Roman
    Kapustin, Vladimir
    JOURNAL OF FUNCTIONAL ANALYSIS, 2011, 261 (12) : 3437 - 3456
  • [9] Normal Truncated Toeplitz Operators
    Cheng Chu
    Complex Analysis and Operator Theory, 2018, 12 : 849 - 857
  • [10] Rank of Truncated Toeplitz Operators
    Gu, Caixing
    Kang, Dong-O
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2017, 11 (04) : 825 - 842