The Reducibility of Truncated Toeplitz Operators

被引:0
|
作者
Yufei Li
Yixin Yang
Yufeng Lu
机构
[1] Northeast Normal University,School of Mathematics and Statistics
[2] Dalian University of Technology,Department of Mathematics Sciences
来源
关键词
Reducibility; Truncated Toeplitz operator; Model space; Primary 47B35; 47A15; Secondary 47B38;
D O I
暂无
中图分类号
学科分类号
摘要
Let T be a contraction on the Hilbert space H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathscr {H}$$\end{document} and S a minimal isometric dilation of T. In this paper, we show that every projection in {T}′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T\}'$$\end{document} can be extended to a projection in {S}′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{S\}'$$\end{document}. Using this result, a sufficient condition for reducibility of ABnθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\theta }_{B_{n}}$$\end{document}, where Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}$$\end{document} is a finite Blaschke product with order n, is given. In particular, we determine when ABnθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A^{\theta }_{B_{n}}$$\end{document} is reducible in two special cases. One case is that n=2,3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n=2,3$$\end{document} and the other case is that Bn=zn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{n}=z^{n}$$\end{document} (n∈N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n\in \mathbb {N}$$\end{document}) and θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\theta $$\end{document} is a singular inner function.
引用
收藏
相关论文
共 50 条
  • [21] Asymmetric Truncated Toeplitz Operators and Conjugations
    Cristina Camara, M.
    Klis-Garlicka, Kamila
    Ptak, Marek
    FILOMAT, 2019, 33 (12) : 3697 - 3710
  • [22] Products of asymmetric truncated Toeplitz operators
    Yagoub, Ameur
    ADVANCES IN OPERATOR THEORY, 2020, 5 (01) : 233 - 247
  • [23] Essentially Commuting Truncated Toeplitz Operators
    Zhao, Xi
    Yu, Tao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2024, 40 (10) : 2453 - 2480
  • [24] Products of asymmetric truncated Toeplitz operators
    Ameur Yagoub
    Advances in Operator Theory, 2020, 5 : 233 - 247
  • [25] TRUNCATED TOEPLITZ-OPERATORS ON THE POLYDISK
    BOTTCHER, A
    MONATSHEFTE FUR MATHEMATIK, 1990, 110 (01): : 23 - 32
  • [26] Characterizations of dual truncated Toeplitz operators
    Gu, Caixing
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 496 (02)
  • [27] TRUNCATED TOEPLITZ OPERATORS OF FINITE RANK
    Bessonov, R. V.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (04) : 1301 - 1313
  • [28] Paired kernels and truncated Toeplitz operators
    Camara, M. Cristina
    Partington, Jonathan R.
    ADVANCES IN OPERATOR THEORY, 2025, 10 (02)
  • [29] ALGEBRAIC PROPERTIES OF TRUNCATED TOEPLITZ OPERATORS
    Sarason, Donald
    OPERATORS AND MATRICES, 2007, 1 (04): : 491 - 526
  • [30] Finite sections of truncated Toeplitz operators
    Roch, Steffen
    CONCRETE OPERATORS, 2015, 2 (01): : 8 - 16