Toeplitz Kernels and Finite-Rank Commutators of Truncated Toeplitz Operators

被引:0
|
作者
Xiaoyuan Yang
Yufeng Lu
机构
[1] Jiangsu Ocean University,School of Science
[2] Dalian University of Technology,School of Mathematical Sciences
关键词
Model spaces; Truncated Toeplitz operators; Commutators; Finite Blaschke products; Finite-rank; 47B35; 47B47;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using some properties about Toeplitz kernels, we present some results about finite-rank properties of the commutator [Af,Ag]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_f,~A_g]$$\end{document}. Firstly, we show that [ABn,Av∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_v^*]$$\end{document} must have a finite rank on the model space Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document}, where Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_n$$\end{document} is a finite Blaschke product and v is an inner function. Next, we present that when kerTu¯Bn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {ker}~T_{\overline{u}B_n}$$\end{document} is an invariant subspace of Tϕ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_\phi ^*$$\end{document}, then [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} has a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} for ϕ∈H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi \in H^\infty $$\end{document}. Finally, we prove that [ABn,Aϕ∗]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[A_{B_n},~A_\phi ^*]$$\end{document} must have a finite rank on Ku2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_u^2$$\end{document} when u=Bnu1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u=B_nu_1$$\end{document} for an inner function u1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_1$$\end{document}.
引用
收藏
页码:2175 / 2193
页数:18
相关论文
共 50 条
  • [31] Finite Rank Bergman–Toeplitz and Bargmann–Toeplitz Operators in Many Dimensions
    Grigori Rozenblum
    Nikolai Shirokov
    Complex Analysis and Operator Theory, 2010, 4 : 767 - 775
  • [32] TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES
    Cima, Joseph A.
    Ross, William T.
    Wogen, Warren R.
    OPERATORS AND MATRICES, 2008, 2 (03): : 357 - 369
  • [33] On kernels of Toeplitz operators
    Nowak, M. T.
    Sobolewski, P.
    Soltysiak, A.
    Woloszkiewicz-Cyll, M.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (04)
  • [34] Kernels of Toeplitz operators
    Hartmann, Andreas
    Mitkovski, Mishko
    RECENT PROGRESS ON OPERATOR THEORY AND APPROXIMATION IN SPACES OF ANALYTIC FUNCTIONS, 2016, 679 : 147 - 177
  • [35] On kernels of Toeplitz operators
    M. T. Nowak
    P. Sobolewski
    A. Sołtysiak
    M. Wołoszkiewicz-Cyll
    Analysis and Mathematical Physics, 2020, 10
  • [36] FINITE RANK COMMUTATOR OF TOEPLITZ OPERATORS OR HANKEL OPERATORS
    Ding, Xuanhao
    Zheng, Dechao
    HOUSTON JOURNAL OF MATHEMATICS, 2008, 34 (04): : 1099 - 1119
  • [37] Commutators of Toeplitz Operators On Ap(ψ)
    于涛
    孙善利
    卢玉峰
    孙顺华
    NortheasternMathematicalJournal, 2000, (03) : 253 - 256
  • [38] Finite rank Toeplitz operators on the Bergman space
    Luecking, Daniel H.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (05) : 1717 - 1723
  • [39] On operators commuting with Toeplitz operators modulo the finite rank operators
    Gu, CX
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 215 (01) : 178 - 205
  • [40] ASYMMETRIC TRUNCATED TOEPLITZ OPERATORS AND TOEPLITZ OPERATORS WITH MATRIX SYMBOL
    Cristina Camara, M.
    Partington, Jonathan R.
    JOURNAL OF OPERATOR THEORY, 2017, 77 (02) : 455 - 479