Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions

被引:0
|
作者
Martin T. Barlow
Antal A. Járai
Takashi Kumagai
Gordon Slade
机构
[1] University of British Columbia,Department of Mathematics
[2] Carleton University,Department of Mathematics, Faculty of Science
[3] School of Mathematics and Statistics,undefined
[4] Kyoto University,undefined
来源
关键词
Random Walk; Random Graph; Effective Resistance; Percolation Cluster; Simple Random Walk;
D O I
暂无
中图分类号
学科分类号
摘要
We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d} \times {\mathbb{Z}}_+$$\end{document}. In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac {4}{3}$$\end{document}, and thereby prove a version of the Alexander–Orbach conjecture in this setting. The proof divides into two parts. One part establishes general estimates for simple random walk on an arbitrary infinite random graph, given suitable bounds on volume and effective resistance for the random graph. A second part then provides these bounds on volume and effective resistance for the incipient infinite cluster in dimensions d > 6, by extending results about critical oriented percolation obtained previously via the lace expansion.
引用
收藏
页码:385 / 431
页数:46
相关论文
共 50 条
  • [41] GAUSSIAN LIMIT FOR CRITICAL ORIENTED PERCOLATION IN HIGH DIMENSIONS
    NGUYEN, BG
    YANG, WS
    JOURNAL OF STATISTICAL PHYSICS, 1995, 78 (3-4) : 841 - 876
  • [42] Spectral dimension of simple random walk on a long-range percolation cluster
    Can, V. H.
    Croydon, D. A.
    Kumagai, T.
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27 : 1 - 37
  • [43] Uniqueness of the Infinite Percolation Cluster
    Benjamini, Itai
    COARSE GEOMETRY AND RANDOMNESS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLI - 2011, 2013, 2100 : 69 - 84
  • [44] Random Walk on Random Infinite Looptrees
    Bjornberg, Jakob E.
    Stefansson, Sigurdur Orn
    JOURNAL OF STATISTICAL PHYSICS, 2015, 158 (06) : 1234 - 1261
  • [45] Random Walk on Random Infinite Looptrees
    Jakob E. Björnberg
    Sigurdur Örn Stefánsson
    Journal of Statistical Physics, 2015, 158 : 1234 - 1261
  • [46] ORIENTED PERCOLATION IN 2 DIMENSIONS
    DURRETT, R
    ANNALS OF PROBABILITY, 1984, 12 (04): : 999 - 1040
  • [47] Existence of a Non-Averaging Regime for the Self-Avoiding Walk on a High-Dimensional Infinite Percolation Cluster
    Lacoin, Hubert
    JOURNAL OF STATISTICAL PHYSICS, 2014, 154 (06) : 1461 - 1482
  • [48] Existence of a Non-Averaging Regime for the Self-Avoiding Walk on a High-Dimensional Infinite Percolation Cluster
    Hubert Lacoin
    Journal of Statistical Physics, 2014, 154 : 1461 - 1482
  • [49] Distribution of dangling ends on the incipient percolation cluster
    Inst. F. Theoretische Physik III, Justus-Liebig-Univ. Giessen, H., Giessen, Germany
    不详
    Phys A Stat Mech Appl, 1-4 (96-99):
  • [50] Distribution of dangling ends on the incipient percolation cluster
    Porto, M
    Bunde, A
    Havlin, S
    PHYSICA A, 1999, 266 (1-4): : 96 - 99