Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions

被引:0
|
作者
Martin T. Barlow
Antal A. Járai
Takashi Kumagai
Gordon Slade
机构
[1] University of British Columbia,Department of Mathematics
[2] Carleton University,Department of Mathematics, Faculty of Science
[3] School of Mathematics and Statistics,undefined
[4] Kyoto University,undefined
来源
关键词
Random Walk; Random Graph; Effective Resistance; Percolation Cluster; Simple Random Walk;
D O I
暂无
中图分类号
学科分类号
摘要
We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d} \times {\mathbb{Z}}_+$$\end{document}. In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac {4}{3}$$\end{document}, and thereby prove a version of the Alexander–Orbach conjecture in this setting. The proof divides into two parts. One part establishes general estimates for simple random walk on an arbitrary infinite random graph, given suitable bounds on volume and effective resistance for the random graph. A second part then provides these bounds on volume and effective resistance for the incipient infinite cluster in dimensions d > 6, by extending results about critical oriented percolation obtained previously via the lace expansion.
引用
收藏
页码:385 / 431
页数:46
相关论文
共 50 条
  • [21] LOCAL TIME ON THE EXCEPTIONAL SET OF DYNAMICAL PERCOLATION AND THE INCIPIENT INFINITE CLUSTER
    Hammond, Alan
    Pete, Gabor
    Schramm, Oded
    ANNALS OF PROBABILITY, 2015, 43 (06): : 2949 - 3005
  • [22] Critical percolation and the incipient infinite cluster on Galton-Watson trees
    Michelen, Marcus
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2019, 24
  • [23] Anisotropic oriented percolation in high dimensions
    Gomes, Pablo Almeida
    Pereira, Alan
    Sanchis, Remy
    ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2020, 17 (01): : 531 - 543
  • [24] QUANTUM PERCOLATION THRESHOLDS AND RANDOM-WALK FRACTAL DIMENSIONS
    TAM, SW
    JOHNSON, CE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (07): : L471 - L477
  • [25] Percolation perspective on sites not visited by a random walk in two dimensions
    Federbush, Amit
    Kantor, Yacov
    PHYSICAL REVIEW E, 2021, 103 (03)
  • [26] CUMULANT RENORMALIZATION-GROUP AND ITS APPLICATION TO THE INCIPIENT INFINITE CLUSTER IN PERCOLATION
    HONG, DC
    STANLEY, HE
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (14): : L525 - L529
  • [27] TRIANGLE CONDITION FOR ORIENTED PERCOLATION IN HIGH DIMENSIONS
    NGUYEN, BG
    YANG, WS
    ANNALS OF PROBABILITY, 1993, 21 (04): : 1809 - 1844
  • [28] The scaling limit of the incipient infinite cluster in high-dimensional percolation. I. Critical exponents
    Hara, T
    Slade, G
    JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (5-6) : 1075 - 1168
  • [29] The Scaling Limit of the Incipient Infinite Cluster in High-Dimensional Percolation. I. Critical Exponents
    Takashi Hara
    Gordon Slade
    Journal of Statistical Physics, 2000, 99 : 1075 - 1168
  • [30] Phase Transition for the Speed of the Biased Random Walk on the Supercritical Percolation Cluster
    Fribergh, Alexander
    Hammond, Alan
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2014, 67 (02) : 173 - 245