Random Walk on the Incipient Infinite Cluster for Oriented Percolation in High Dimensions

被引:0
|
作者
Martin T. Barlow
Antal A. Járai
Takashi Kumagai
Gordon Slade
机构
[1] University of British Columbia,Department of Mathematics
[2] Carleton University,Department of Mathematics, Faculty of Science
[3] School of Mathematics and Statistics,undefined
[4] Kyoto University,undefined
来源
关键词
Random Walk; Random Graph; Effective Resistance; Percolation Cluster; Simple Random Walk;
D O I
暂无
中图分类号
学科分类号
摘要
We consider simple random walk on the incipient infinite cluster for the spread-out model of oriented percolation on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}^{d} \times {\mathbb{Z}}_+$$\end{document}. In dimensions d > 6, we obtain bounds on exit times, transition probabilities, and the range of the random walk, which establish that the spectral dimension of the incipient infinite cluster is \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac {4}{3}$$\end{document}, and thereby prove a version of the Alexander–Orbach conjecture in this setting. The proof divides into two parts. One part establishes general estimates for simple random walk on an arbitrary infinite random graph, given suitable bounds on volume and effective resistance for the random graph. A second part then provides these bounds on volume and effective resistance for the incipient infinite cluster in dimensions d > 6, by extending results about critical oriented percolation obtained previously via the lace expansion.
引用
收藏
页码:385 / 431
页数:46
相关论文
共 50 条
  • [31] On the mixing time of a simple random walk on the super critical percolation cluster
    Benjamini, I
    Mossel, E
    PROBABILITY THEORY AND RELATED FIELDS, 2003, 125 (03) : 408 - 420
  • [32] RANDOM-WALK IN A PERCOLATION CLUSTER - EXTERNAL-FIELD DEPENDENCE
    LEE, JW
    KIM, HC
    KIM, JJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (03): : 735 - 740
  • [33] Subdiffusivity of random walk on the 2D invasion percolation cluster
    Damron, Michael
    Hanson, Jack
    Sosoe, Philippe
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (09) : 3588 - 3621
  • [34] On the mixing time of a simple random walk on the super critical percolation cluster
    Itai Benjamini
    Elchanan Mossel
    Probability Theory and Related Fields, 2003, 125 : 408 - 420
  • [35] The dimension of the incipient infinite cluster
    van Batenburg, W. P. S. Cames
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2015, 20 : 1 - 10
  • [36] THE INFINITE SELF-AVOIDING WALK IN HIGH DIMENSIONS
    LAWLER, GF
    ANNALS OF PROBABILITY, 1989, 17 (04): : 1367 - 1376
  • [37] INHOMOGENEOUS PERCOLATION PROBLEMS AND INCIPIENT INFINITE CLUSTERS
    CHAYES, JT
    CHAYES, L
    DURRETT, R
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (06): : 1521 - 1530
  • [38] Monotonicity for excited random walk in high dimensions
    van der Hofstad, Remco
    Holmes, Mark
    PROBABILITY THEORY AND RELATED FIELDS, 2010, 147 (1-2) : 333 - 348
  • [39] Monotonicity for excited random walk in high dimensions
    Remco van der Hofstad
    Mark Holmes
    Probability Theory and Related Fields, 2010, 147 : 333 - 348
  • [40] Directed percolation and random walk
    Grimmett, G
    Hiemer, P
    IN AND OUT OF EQUILIBRIUM: PROBABILITY WITH A PHYSICS FLAVOR, 2002, 51 : 273 - 297